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PREFACE

Although many excellent books on number theory are ayhlls
able, there seems to be no one text that develops, in &'gys-
tematic manner, the more elementary portions of thejubject
in a way adapted particularly for the classrnpm: and the
beginning student. The absence of such a b@N? is keenly
felt, inasmuch as the instruction in elementayyNtamber theory
js given in an cver-increasing number of Aabefican universitics
and colleges. ‘With this fact in mind thé\authors have endeav-
ored to prepare a text carefully restrleted to the elementary
portions of the subject and yet coutaining things of sufficient
intercst to show to undergradugte students the reason for the
enthusiasm  with wh‘i’(}ﬁw‘éll?g{ Al 5EeeR Sl number theory
approach their subject. ,

Owing to scif-impogedNimitations on the size of the book,
many topics of interesthad to be omitted. A chapter on eon-
tinued fractionsswould have been particularly desirable, but
only through amanifold applications can their real value be
understood, and this would have extended the book beyond
reasonablq';hlhits. Geometrical and analytical methods were
excludddMor the same reason. (f the theory of guadratic
forpig\only so rouch is given as to arouse in students the
desite to study decper this fascinating topic.
¢ \™n several respects the material included in this book differs
from that of standard texts in English. Here and there
general principles are illustrated by applications to questions
that are likely to interest beginners.  Such arc the appendixes
on Magic Squares, Calendar Problems, and Card Shuffling.
Chapter IX deals with arithmetical properties of Bernouliian
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vi PREFACE

numbers, including a little known and yet very useful theorsm
of Voronoi from which a great many properties of Bernoulilsn
numbers are easily derived. Chapters XII and XTIl :lso
contain some material not to be found readily in other texis
Although the problem sets are not overly extended, they yie
definitely a part of the book and were designed to Supplcm{l'a\n
the sections and chapters in which they appear. Theﬁ\t’:t}gmut
should enjoy testing his grasp of the theory by sohf\i;/l;g ﬁ‘heis'w_‘;'
J. \T:\ﬁi’h’ENSKY'_
' M\'\A’ Hrasnur,

STaNFORD UNIVERSITY, \\ /
Ban JosE StarE COLLEGE, \
August, 1939, 3 *Z\ v
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ELEMENTARY
NUMBER THEORY

s

CHAPTER I .~~~}‘
ELEMENTARY PROPERTIES QF.INTEGERS

1. Origin of the Theory of Nutn}ers The theory of
numbers, also called higher arlthmetic, is concerned, at least
in its elementary parts, with tlesproperties of whole numbers
or integers. As an W%&’r}lhhmdlhn&ih&mtmal discipline it is
one of the youngest, yet its\roots go decp into history.

The notion of the wiele number as an aggregate of units is
so primitive that jt§ Bardly possible to imagine human beings
who do not posgeﬁ\it in the form of counting, at least within
a limited rangd.> As far back as any records can be found,
mankind ppsfessed adequate methods for keeping a tally of
things, Whl’{e our knowledge of ancient eivilizations reveals an
alreadx,hlghly developed art of denoting and operating on
numf)\rs as far back as 3500 B.c. and earlier.

The needs of everyday life were primarily responsible for the
snse of practical arithmetic. On the higher level of civilization
‘when urgent nceds were satisfied and opportunity and leisure
were available to ponder about things, numbers in themselves
began to attract attention. Peculiarities of individual num-
bers or elasses of numbers began to be observed. But such

speculations on numbers, far from being a real study of their
1

Q



2 ELEMENTARY NUMBER THEORY

properties, developed at first into a peculiar number mystici-m
prevalent among ancient civilized peoples. Such numbers as
3 and 7 were accepted as omens of good luck. Later, such
terms as perfeet numbers, feminine numbers, and amicable
numbers were used with no appreciation as to whelher thin,
eoncepts were of a strictly mathematical nature or merely of
mystical propertics. Ancient Hebrews and Grecks aeke
versed in a kind of numerology made more adaptable 1of i}m} -
stition and quasi-religious beliefs by their partlcular ptxml) r
systems. ‘These peoples used the letters of the alplmh(r to
write numbers so that words had a double s;gfn’ﬁ( ance. I
is contended that ccrtain Biblical passageslifivolve such o
double significance, which must be recogm\')sed if the passagos
are to be completely understood. A\

The first rudiments of a scientific’approach to the study of
numbm‘%, still intermixed with a good deal of number mywri-
cism, can be traced back to Bythagoraﬁ (sixth century B.
-and hlS dlSClp]e‘S""’“I’E”i%EHH?E%'éH Rl the distinetion between
prime and composite numbets was made in the Pythagorean
school and, if true, thigdistinetion is almost as much to the
credit of the Pyt u@ofeans as their other great discovery
of incommensurabl® magnitudes. That the Pythagorcussz
attained some degr(,c of proficiency in the theoretical investign.
tion of numbersis attested again by the rule attributed to the
head of t-h@schoal himself for forming right-angle trmm lf 3
with integral sides like the age-old friangle with sides 3,41

By fhe time of Euclid (about 300 B.c.} the Greeks possesse d
guite a number of strictly scientific facts about numbers,

”?ﬁc")st-ly pertaining to their divisibility. A great impulse to
the further development of number theory was not received
until the seventeenth century, with the memorable discoveries
of many deep and abstruse properties of numbers by Fermat.

This is not the place to go into more details concerning the
historie development of our science. It suffices to say that,




ELEMENTARY PROPERTIES OF INTEGERS 3

sharing its origin with mystical speeulations on numbers, the
theory of numbers in time grew inte a vast and beautiful
branch of mathematics with ramifications linking it with
almost every other branch of this seience.

Another great science, astronomy, also owes its origin to a .
pseudo-science, astrology. And strangely enough, just as
astrology still survives side by side with astronomy, so,fhe
ancient numhber mysticism thrives even now under the gdist of
numerology—a fact that would make one despair of, mankmd
had not, on the other hand, the human SPITiY, produced
sublime creations, of which the theory of numbem‘m one.

2. Operations of Addition and Mulhphcatmn Almost
inseparable from the conecept of an integeritgell is that of the
addition of two ‘or more integers. Whendthe units of which
two integers ¢ and b consist are puk together, a new integer
a + b—the sum of ¢ and b is generatud It is intuitively
clear that the operation of addltlon conforms to the following

laws: WW W dbrauhbl ary.org.in
Commutative law for addition:
i*?}—l— b=0b+a

Assoeciative law for addition:
(a—l—b)+c—- a + (b 4 ¢,
and ev uytl{mg elsc pertaining to addition follows from these
laws., 7\
The%ultlphcation of integers is merely repeated addition;
thatds, to multiply @ by b is to find the sum of b numbers,
. spabh of which is @. Like addition, multiplication is a com-
\ mutative and associative operation; moreover, it is distributive
with respect to addition. We mean by this that multiplica-
tion eonforms to the following laws:
Commutative law for multiplication:

ab = ba.



4 ELEMENTARY NUMBER THEORY

Associative law for multiplication:

(ab)e = a(be).
Distributive law:

{6 + b)c = ac + be.
The distributive law is a simple corollary to the commuthiive
and associative laws for addition. As to the two other“kuws,
long practice in arithmetic since childhood makes lem Ceem

obvious, although a few explanations arc ne(‘emary to Conviite
oneself of their universal validity. Take b re\w deach eon-

sisting of @ units, .u.\
a times
e, R ) \.:
1,1,1, 1%\
1 rlr]- H “;1. E
....... W=

and add these wmm,&pyﬁa‘m@rg-iwhc sum in each row iv 2
and thcre are b such rows; hence the total sum is ab. fin
the other hand, add{th¢ units by columns. The sum in esct
column is b andiﬁaxé are @ such columns; hence the lotal ;
is ba. Thusgb = ba. The prln@lpl( mvoh ed in this reas::
mg—countmg ‘the same collection in two different ways—is
very oftenNised to derive much more abstruse results.
Conﬁ‘la‘er now ¢ rows, each consisting of a number b repeated

@ ti@es’:

o\ b,b,b, !b
\ bbb, ,b
b,b,b, . .. ,b

and add these numbers first by rows and then by columns.
The resilt of the summations can be expressed in two ways:
first, as (ba)c; and second, as (be)a, so that

(ba)e = (be)a.



\ oo

V

ELEMENTARY PROPERTIES OF INTEGERS 5
But by the commutative law

be = ab, (bc)a = a(be),
BO

{ab)e = albc).

Everything else pertaining to multiplication and addifidn
follows from the enumerated fundamental laws, but we (hged
not go into details to show how it can be proved.

The operations of addition and multiplication open ‘the way
to various classifications of integers according ta‘thmr origin.
As an example, we see that some integers can hé generated by
repeated addition of 2; while the others«cahriot. Hence the
distinction between even and odd infegers—possibly the
oldest of such classifications. Again {Rome integers can be
generated as products of factorsshone of which is unity; for
instance, 6 = 2 - 3, while the others, like 5, cannot he gener-
ated in this fashion. Hence thpre arises an important division
of integers into empdb,n‘mﬂlm& ypuignes. Squares, cubes,
biquadrates, etc., are gt,néi‘ated ag products of two, three, four,
ete., equal number%

3. Summation af bertam Series. Nothing is more natural
than to seck thé@um
O 1+2+3 444+
of all inﬁttégérs from 1 to any given integer n.  Of course this
came done by direct addition when « is given, though for a
]a.rg’% % this is inconvenicnt. The question arises whether the
‘aame number can be generated in some other way which would
bL, simple and more convenicnt. The answer has been known
sinee time immemorial. To find the sum

142+3+4+ - +n

it suffices to multiply one-half of n by » + 1if n is even and
one-half of n + 1 by n if #is odd. It is in this reduction of
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6 ELEMENTARY NUMBER THEORY

the original problem to a much simpler onc that the summati:
of the series

1424344+ - +n

consists. This and some other “summations’” can be treatod
by a very simple and intuitive geometrical method which: we,
shall now explain,

‘Let us consider first the series

1+24+3+44+ - +n

‘Denote the number 1 by a square of unit area, 2, by‘tv\ o sieh

areas, and so on. The problem of summmg thie nutbers s
now changed to the problem of finding theNarta of the gy
A\

A\

W

\os

$

www.dbr ﬁ*’l'u ; VIoTEim
NS

where the dimensiomx"a\*e n along the bagse and side.  Taking
an identical ﬁgu%\”we may join them so as to produce the
rectangle

.'n'
s
A\
)
/

:.\’ -

£

\‘,/
QO

N

The dimensions of the rectangle are # by n + 1, and its area is
a{n 4 1).° It follows that the original area is n(n - 1)/2,
and the sum of n consecutive integers is equal to onc-half the
number of integers times this number increased by 1.
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Again consider the sum of the first # odd integers
14+34+54+7+ - +(2n~1)

{Jging the same geometrieal figures, we see the sum is the
total area of the following figures O

I P
/,.‘)
[TT 1Ty

—

P
)

[IT71
I A,

g3 oH 8 ool oo

N\

where the last one has n squares along eac.Q gide, These areas
R 7a N/
¢an be combined into a square as shov@{hern,

% 3
L3

& M

WO an T [grg.in

<N

from which welepnclude

{%é+5+7+---+@n—ﬂ=n{
Slig&@.{f’ more ingenious methods are necded to sum the
serifQ)
s‘.\’f{” 12424304 - +nd

\/ We shall develop the result for n = 4, using, however, reason-
ing which can be immediately gencralized. From the figures

I:El:! 3= H- £= jﬂjﬂ

=1 %=
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1t follows
1427430442 O
. A
\)
n O
Again N |
' . A |
2 £ '|,
. \:"’\\ !
1%2=[] 22=E ¥= Nl o I
and so \\,
P
Pr2?+30447= i—] I:.:‘.‘
hence {"::k
wwr gt mx"'\ arydra.in
3+ 2%+ 8% +4% =T[5 Cl=@4+D0+ 243+ 0=34524+ 7

SE
\ 1
Ve )
The genera{resuit can thus be written
1\+22+32+ -+ n? = fnln 4+ 1320 4+ 1).

Ag\a final example we cmploy a more or less pseudo-geo-
mét‘i‘if 1al summation of the series

\, 13__{__23_‘__31 "’+ﬂ3.

The result will be demonstrated for the case n = 4, although
general methods will be used.  From the relations

=1t 2+4+4+42=2, 34+6+94+6-F3=
4184124+ 16-+12+84 4 =48
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ve ean conclude that the sum of the given cubes is the same as
vhe sum of the numbcers in the following figure:

4
8
o N2
12 4 \.o\
S )\
N
16
\Y

f'hat the above relations are true'in general weﬂ;\ay sce, slhce

R N Rl Y UE RSN R s+ S
‘ LY 42ti=
HAA243+ - G- 1) PEO= A6 — i+ =

since each column in the figure i;;’é}mu]tiple of the first column,
the sum of the nunlhgwagpgﬁ'ﬁﬁﬁﬁtﬁ%rg‘in

(.L+2+3+4)(1\$24—3+4}=(1+2+3+4)3
and, as a general @uiﬁ
13_|_2i_‘+,’ .. —[—n"‘: (1+2+ PO +n)2

The Tesfilts we have obtained are more or less trivial alge-
braic fekth, but it is casy to see that they must have been con-
sideréd™ quite astonishing to ancient discoverers who were
Pl{fii‘ély lacking in our algebraic methods and were handi-

““eapped by their unwieldy number systems.

4. Polygonal Numbers.. The bent of the Greeks toward
geometry no doubt explains their interest in numbers con-
nected with geomctrical figures, These so-called * polygonal”
or “figurate’” numbers can be defined in a purely geometrical
fashion, but we shall discuss them algebraically as well.
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Consider the arithmetic progressions
1,2,3,4,5,6, ...,n;
1,357,911, ...,2n — 1;
1,4,7,10,13, 16, . . . ,3n — 2;
1,5,9,13,17,21, . . . ,4n — 3; I\

.....................

The sums of these progressions give respectively the t-ri;m;{ g"nﬁu‘.,
square, pentagonal, hexagonal, . . . numbers of ( rafik s
In general the nth r-agonal number 27 is cqual to{tHe sum of
the n first terms of the arithmetic progreasiorf Qi:ginrlirlg with
1 and with the common difference r — 2. 30

The reason for the geometrieal nomegclature is apparcnt
when the numbers are replaced by dots and the dots arc
arranged in the following figures:

NAME  RANK 1 RANK 2 _ () RANK 3 RANK 4
www,dbraul'b;‘é}y.org.in Q g; E .
Triangular . }é\: 3
e
O
&>
Square . ‘\ D ] ]

3

NS/

N

:"\.:s.
O Sy éZ/

-~ :'IéhUS , considering regular polygons homothetie with respeet to
Jone of the vertices and containing 2, 3, 4, . . . , n points al
equal distances along the sides, the collection of points gives a
-geometric representation of tho polygonal numbers.
The nth term of an arithmetic progression, beginning with 1
and with the difference v — 2, is '

L4 (n — 1 —2),
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i1

and since the sum of the terms of an arithmetic progression is
ihe product of the number of terms by the half-sum of the
sxlreme terms, it follows that '

n a(n — 1
P= 324 (= Do =9l =+ ¢ - 92D
A table of the first [ew polygonal numbers is given below:
Number 1st[ 2d | 3d ;4th | 5th |6th | 7th | 8th | Sth4\JOiK
- I I | Ne
Triangular....., 13 6|10 |15 21| 28 36,.3'&5 55 |
Baquare. . ....... 14 3|16 | 25| 36 | 49| HL) Bl | 100
Tentagonal..... 151222135151 | 70 "‘:}2 117 | 145
Hexagonal......| 1 |6 |15 | 28 | 45 | 66 g h120 | 153 | 190
Teptagonal. .. .. 1|7 (18|34 |55 | 81 p 12 | 148 | 189 | 235
i Oatagonal .. ..., 118121 )40 ) 65 9( :}33 176 ( 225 | 280

Once one has the explicit expregsiohs for polygonal numbers,
many simple propertics conne{sﬁ(}}i with them reduce to mere
slgebraic identities, \bmﬁ%ﬁiﬁiarafg,qwgtmf ingenuity can be
expended In establishing €Beir properties geometrically. Tet
us consider a simplesexample: Ivery octagonal number is
equal to its rank pl,u's"%he triangular number-of preceding rank

multiplied by 6. XN

This iz a literal statement of the algebraic cxpression for
#3 and iz JmhddAously a special case of a more general faet.
Geometri’g}éﬂjr it is clear that an octagonal number of any rank
can b({[)}b’ken up as shown below:

TN,
&

N®

AN
\ -
\;

izl

Q.
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5. Subtraction and Division. Addition and multiplicaticn
can be applied to integers without restrietion. The reverse
operation to addition—subtraction—however, Js not alway
possible. To avoid this inconvenicnee, the series of integers
1,2,8, . .. is completed by adjoining 0 and negative integeo,
—1, —2, -3, . ... We now think of integers in & gene

sense as consisting of the sequence of numbers o
{

..., —3,-2,-1,0,1,23, ..., ;.;,‘
which can be indefinitely extended in both direp’qifonr; and is
closed under the operations of addition, suktraction and
multiplication. ¢

If b denotes an arbitrarily sclected pgsitive integer, the
integers RS
..., —2b, —b, 0, bN2b, . . .

are called ““multiples” of b. An;i’ri%eger a cither coincides with
one of the multiplesufdbogulibmphpairgthbetween two consecii-
{ive multiples. In the formut case there is an integer ¢ such
that @ = be; in the lajfer case therc is again a determincd
integer ¢ such that Bc)< a < ble + 1). Since, in this case,
a — be > 0 and, pﬁ\}he other hand, @ — be < b, we can sct

a=betr (1)
where '.-"’}\';D*énd r < b. When g is a multiple of b, ihe same
equalifywill hold, but with r = 0. Thus, given two integers
a, b, the latter being positive, there exist unique integers ¢ and
74 Si;cfl that

N

\‘z a=>be+r

where 0 < » < b, Numbers ¢ and r are called, respectively,
the “quotient” and “remainder” in the division of e by b, and
in practice they arc found hy a process of division explained
in elementary arithmetice,
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T+ was assumed that b was a positive integer; but clearly
(1} will hold with proper ¢ and r if & is a negative integer,
enly then will the limitations for r be 0 = r < [b|. The
case of b = 0, however, must be excluded. The fact that for
any integer ¢ with respeet to an integer b O there exists a ,
ropresentation in the form (1) with 0 < » < |b| appears very
trivial; nevertheless it is a fact of truly fundamental impéxx-
tance in the theory of numbers. O

6. Scales of Notation. For purely theoretical pugpgsés it is
quite immaterial what system of representing Jilttegers is
adopted. Greeks, with the most tumbergeme\notation for
nimhers, were able to discover some fundamental arithmetical
sruths. However, for practical purpopedvit is desirable to
denote numbers in such s way as.te “facilitate the actual
performance of operations on them. In this respect the
Hindu-Arabic or decimal system safisfies all the requirements
axceedingly well. It is based Ol the possibility of representing
any integer N in the“fm‘ib?&“ljbl’ar y-org.in

N = ¢ + ol + ¢10% + - -+ + ;107
where the * digits”oé;,}], £e, . . . arecitherOor numbers from
1 to O denoted by\special signs.

Instead of thonumber 10 as a base or radix, any other num-
ber p greatef-than 1 can be taken and any integer can be
vepresen \t'y}i“in the form

A’%"‘ Ne=co+cptop*t - +ecnm
with digits c, c1, €3, - . . BS numbers not greater than p — 1

~(ahd not less than 0. To show that such a representation is
N\ 'possible, we divide N by p; let N1 be the quotient and ¢
the remainder in this diviston. Then
N =Np+ 0=2ec<p

and N, < N. Aslong as N, = p we divide again N, by p,
obtaining N, for a guotient and ¢, for a remainder, so that
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Ni= N + ¢y, 0= <p

If N, 2 p we continuc in the same manner. Thus a serics: of
decreasing positive integers arises:

N>N,>Noe> - >Nus > Na &N\

and this series can be continued after each term N wlﬁt\}’ i
= p. Now this is an evident pringiple often usgd\ 1 bl
number theory: a series of positive decreasing mtogpm canlok
be eontinued indefinitely. Henee there w1ll be some term
N.. in the above scrics which iz positive @hd legs than p.
Then, setting

No=cn s\

o:'\
and eliminating N, N,,,_l, C ey Njf\from the systom
N;P .‘f—:t"n
N1 = ﬁfﬁﬂ + e

W d.br.‘au.rll.bl. ary.org.in

~

Nm—2'~—_' -z\"m—lp + Cm—2
i\rk_1 = Nmp + Cm—1
N\ PN = Cm,
we get the dgesiyed repregentation
' \*’\N=60+clp+czp2+ S e
wit "\<,o for i=0,1, ..., m and ¢ = 0 for £ = §,
1, '\ — 1 while ¢m > (. That this rcpresentation is
g umque follows gimply from the observation that in any such
~\representation
3
N=dy+dp+dp*+ -+ -

dq 1s the remainder in the division of N by p, d:is the remainder
in the division of

N —dg
p

le
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by p, dy is the remainder in the division of N. = ‘M—;é
by p, and so on, 80 that ds, d1, dz, . . . of necessity coincide
with €y, 1, €2y = » o s

For a given basc or radix p the number N may be indicated,
byw merely writing the coefficients of the expression for, A
in reverse order. Since the coefficicnts are integers droin
Gto p — 1, only p symbols are needed fo express N no;xiﬁatt‘er
how large N is. Forp = 10 we usc the Hindu—Aralgié’@ymbols
1,1,2,3,4,5,6,7,8,9. Forp = T7wemight use an, 2,3, 4,5,
& and for p = 2 merely 0 and 1. As an exa.mp]},\considcr the
aumber [ourscore and six. Using these sealés of notation,
we should have ’:”\\:

w\
(86)1 = 810 + 6 = 1+ 72 + 5 - AHJ2 = (152)7
=1-2241-20 42241 2= (1010110)2.

#or increasing bascs ye ‘i(‘%{;‘éﬁﬁ%gﬁvely_, the binary, ternary,
guaternary systems, an §0 om. When8he base is 12, two
iew symbols are needed for 10 and 11 If we take as our list of
digits 0, 1, 2, 3, 4,,5;'3, 7,8, 9, &, 8 we have, for example,

N
p \ (30,816),0 = (15,a00) .

Division b‘j.\ 12 natarally consists in pointing off a “duo-
decimgﬂi’;}sface : division by 6, as in the ease of 5 in the decimal
systgndy/merely consists of multiplying by 2 and moving the
dioddeimal place to the left; divisions by 4, 3, and 2 similarly

¢ may be replaced by operations in multiplication,

AN

\‘:

" 7. The Binary System. In the binary system each integer
is represented in the form

N =22t et ke

where the digits ey, €1, €3, - - - are either 1 or 0. Dropping
terms with coeficients equal to 0, we see that every integer
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can be represented as a sum of powers of 2 and in only one way.
Thus, for example,

343 =28 4 28 424 4 22 42 4+ 1

considering 1 as the zero power of 2. ~
That every integer can be partitioned into parts whilt
are powers of 2 is an interesting, useful, and not quite thipnl
proposition. Besxdes its theoretical wvalue it hasf t‘urmn
applications in “‘recreational mathematies.” T,houg,h {his
does not belong properly to the theory of numbgrs, it should
be interesting to present an applicafion of the”bmary systenm,
by no means trivial, to the theory of thedgame of Nim, an
ancient pastime originating probably iny tha
In the original form Nim is plq,yh;d with three piles of
counters and is for two contestants The contestants play
alternately and may pick up asdnany counters as they wish,
at one time, from one ﬁnle bl.tfu they must take at least cue
counter. The winner R %'flzel ot Sidkig up the last counter.
The game and its generahzatlon, which we intend to consider,
may be analyzed comipletely through the use of the binary
gystem; that is, ﬁmte rules may bc established such that if
one knows thesé ;}Ies and has a favorable opening move, he
can always yifthe game. In the general form of the game,
we assumg ‘there are m piles with 4, B, C| , L objects.
It is allowed to take up any numbers of objects from not more
thar};%pﬂes, where &k £ m — 1, and the player pieking up
thedlast counter wins.
s ;‘The method of selution Hes in the determination of certain
\_bositions such that if one player P leaves this position, the
other player @ cannot possibly win. We proceed as follows:
Write 4, B, C, . . . , Lin the binary system of notation and
write the sum of the digits in every column. If in all the
columns the sum is divisible by & + 1, we have an “extra-
‘ordinary position’'; otherwise we have an ‘‘ordinary pesition,”
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¥rom an extraordinary position, no matter how one plays,
an ordinary position results. This is almost evident, for the
digits in some column must change, and in the first column
from the left in which the change oecurs, only units may change
into zeros, not zeros into units, since the numbers diminish. ,
Again, at least one unit and not more than k are changed into
zeros and, in conscquence of this change, the sum of the digats,
which originally was divisible by % + 1, no longer will(¥etain
this property. N\

It is possible, from an ordinary position, tojﬁeduce an
extraordinary position. To prove this we ﬁrgst)d?sregard the
columns with sums divisible by ¥ + 1. Jh’the remaining
columns #, Iy, Is, . . ., counting from Jeftto right, suppose
the sums leave the remainders 7, 13,05 . . . When divided
by k + 1, each being less than or equabto k. Write 7 numbers -
having r units in column [ in the fitst r lnes and replace all
these units by 0.  Smaller nugabers will result, not more than
k piles will be aﬁect-ed\,m'ﬂiﬁi;helmmmw&ﬁquigits in eolumn !
will be divisible by & 4= 1>% Consider now column [; and let
the number of zeros in(the first 7 lines of it be . Suppose at
first 1+ 51 > kb t‘ﬁ‘a,tt s, azkt1l—rn Changing & + 1
— 71 zeros to 1,,}1‘18 gum of the digits in column I will be
divisible by k>k1. Suppose next that r1 + s1 £ k. To the
» numbers @lrdady chosen we add as many of the remaining
as are nQé?l‘ed o give r units in column I, and replace these
units-byzeros. In both possibilities the numbers considered
ma¥ enly diminish, -and we have made the sum of the digits
. ;irijcélumn I, divisible by k + 1 while not changing more than
\\‘;E piles, Passing to column /> we proceed in the same way, and
so on. This proves the statement.

Examples will illustrate these operations better. Suppose
we have given m = 6, k = 4 with piles containing 6, 8, 11, 25,
29, and 31 objeets. Summing the columns, we find I =1,
L=3 =4 Ig=5 and r =3, r1 =3, r» =3, rg = 4.
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Bince r = 3, we must change three units to zeros. Since
sy = 1,r1 = 3,and sy + r1 = 4 = k, we must adjoin a nunher
so as to.have 3 = r, units in the third column. Again,
82 =2, rp =23, and s 4 ro =5 >k, so that we change
E+1—re =2 zeros to 1. Finally, sg =1, r: = 4, aui
g3+ r3 = 5 > k, so that we change bk +1 — r; = 1 zerc to %

The work may be arranged as follows: r"x"\.
O
® ® # * \ 7
<™
1—-0 1 ¢ 0—=1 10
1—0 1 1—=0 0-1 I\
1—0 1 1—0 1 1
120 1 AN 01
1 0 08" 0
1 0 :.1‘1 1

and we have as a result the eg&tfébrdinary position

www_dblﬂﬂiﬁié}"qfﬁ%ﬁn
Q11 < 11,101
(N\Mo11 < 11,111
\\"' 11 < 110

O 10040
<" 1011
A\ 5085

&

Fox%é:":second example, suppose m = 6, £ = 3 with piles

contgining 2, 3, 4, 9, 13, and 14 objects. We find [ = 1,

=2 Lh=3 L=4 and r=3, n=3 n=3 r=3

‘\"\Since r = 3 we must change three units to zeros in colummn L

Bince sy = 1, rn =3, and r, + sy = 4 > &, we change k¥ + 1

—r1=1 zero to 1. Again, s =2, ro =3, and r, + 2

= 5 > k; hence we change X + 1 — 7; = 1 zeroto 1. Finally,

s3 =1, 7, = 3, and r; + 85 = 4 > k, s0 that we change again
kE+1— 73 =1 zero to 1.
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The work may be arranged as {ollows:

* * *
10 1 1 0—1
1—0 1 01 1
10 0—>1 0 1
1 l L s
1 0 0 ‘O
1 0 O
and we have as a result the extraordinary positionas, 3
0111 < 1110 o
0111 < 1101 v
0101 < 1001 /5
1 A
100 AV
NS

www.db:?;ﬁlibl'ary.org.in

In the game we shall snppose P has a favorable opening
move; namely, that he isiconfronted with an ordinary position.
He will then leave @ aﬁ}xtraordﬁnary position and, as we have
shown, @ must lefive P an ordinary position from which P
can obtain an(eéxtraordinary position. Thiz sequence of
alternate evants will continue until eventually some of the
piles are O\As long as the game iz in progress, after P has
played\tﬁkfé are at least & 4 1 piles of objects, since this is
neceséary for an extraordinary position. Hence & is always
f@Qed with at least k 4 1 piles and cannot win the game by
~ypemoving all the objects. But the number of piles must
\ éventuslly become less than & 4 1, and since such a situation
would result in an ordinary position, the next move must be

that of P, and by removing all the objccts he will win.
8. The Lure of Number Theory. The theory of humbers,
unlike some other branches of mathematics, is a purely
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theoretical science without practical applications. Soine of
the men who actually took part in promoting its limits even
boast about this lack of application. One of the grestest
representatives of number theory in the nineteenth cratiiry,
Kummer, is said to have remarked on one oceasion that of all
his discoveries he appreciated ideal numbers most becawge
they had not soiled themselves as yot with any prathical
applications. R\

What, then, compels men to spend a lot of time}‘zﬁi.d affort
on arithmetical investigations? Surely not the woivibl proper-
ties of numbers such as those with which wehaye deall. in this
chapter. They may amuse beginners and\dmateurs but not
great mathematicians. Yet only veryyfew among the great
mathematicians did not work at ond fime or another in the
theory of numbers. The answex igvthat the whole beauty of
this science bocomes apparentioiily to those who penetrate
deep into it. That is‘exactly';,’w"hat Gauss wrote in one of his
letters to & ta R 'bgf'ﬁ'(f“)lf‘e%;fﬂed lady, Sophie Germain:
“Tes charmes enchanteufs de cette science sublime ne ce
déetlent dans toutg..}éur beauté qu’a ceux gui ont le cournge
de Vapprofondirg¥

To penctrafe déep means to diseover and prove or ai least
to be ablete nrrderstand recondite relations between mumbers.
Pierre de Feérmat (1601-1665), who may be called the fathor of
modern @umber theory, was the first man to discover really
deep properties of numbers.

A

\ ‘Permat was an cxtraordinary man. A jurigt by profession, he was also
(i great mathematician and an necomplished elassical scholar. With

Pascal he laid the foundations of the theory of probability, developed
analytical geometry independently of Descartes, and wasg onc of the
founders of infinitesimal ealculus,  Yet his discoveries in number theory
overshadow everything clse he did. These discoveries he communicated
mostly in letters to his contemporaries; some of them he jotted down in
marginal notes on the copy of the Diophantus ¢ Avithmetic” in his
possession. But he never revealed his proofs and gave only very general
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indications about his methods, Yet all of his theorems later were found
true, with one exception, and one-—the famous Fermat’s Last Theorem—
still remains unproved except in parlicular cases.

Just a few of Fermat's theorems will show what deep rela-
flone exist betwcen numbers. At first sight there is no
apparent relation between polygonal numbers and integers in
general. Yei according to Fermat every integer is elthex
trlangular or the sum of 2 or 3 triangular numbers; exery
number is either a square or the sum of 2, 3, or 4 squales,
either pentagonal or the sum of 2, 3, 4, or 5 pcntagon&l
-numbers; and so on. This is a truly deep propert$ of numbers,

Nothing apparently links numbers which\are/sums of two
squares and primes which exceed by one, &multiple of four.
Yet Fermat discovered that every buc}Kprlme is the sum of
t.wo squares. For example:

NN

=12 4 22, 13*32-[-233 ) 41=52—|—42,etc.
In relation to cubes %W&hguﬁ%}yq?, WO might cite the

so-called Waring’s theoremygteording to which every integer
is the sum of not more than 9 positive cubes or 19 biquadrates,
and so on. + x\

On the subject of\humber theory, in the preface to the col-
lected works of Eiscnstein Gauss said,

“A great rt (}f its theories derives an additional chari from the
pecuha.nty tl&‘t impartant propositions, with the impress of simpleity
upon them,, are often easily disecoverable by induction, and yet are of so
profoun&\a character that we cannot find their demonstration Il after
map¥vain attempts; and even then, when we do succeed, it is often by

_.5ome tedious and artificial process, while the simpler methods may long

\ remain concealed.”

It is natural that much preliminary study of things which
are not so very interesting in themselves is required before
one can appreeciate some of the arithmetical treasures con-
tained in later chapters of this book. But this is inescapable:
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before learning to walk one first learns to crawl. With this
admonition to the reader we pass, in the next and following
chapters, to the systematic study of the elements of number

thoory,
Exercises and Problems ~
1. Expross (3,847)5 in the binary system; in the ternary qutem
2. Expross (42,381) 1 in the duodecimal system. p .\
8. Multiply (641)7 by (533);. Divide (2,806}, by (35)s.
4. Extract the square root of {341)s. N
6. Thc fra(,tlon 184, has the peculiar property that an u:tcorrcct endi-,

cellation, i 4, gives the corrcet answer. Find a mrmla,(pau' of two digit

munbers with this property, using the base 8. Could a similar pair be
found using the base 77 \
8. Write all the extraordinary positions inf ﬂae ordinary game of Nim
when each pile has 5 or less counters.
7. Show pgeometrically that every hm(agonfll number equals ifs rank
plus four times the triangular numbgcs of ‘preceding rank.
8. Show geometrically that ning~imes a triangular number of rank n
plus one is a trgyngul numberswith rank 3n + 1.
8. Show that a pegr‘lf‘lca.gu!llﬁ Ahvibos cannot end in 3, 4,8 or 4.
10.' Prove that s hexaggotial number cannot end in 2, 4, 7, or 8.
11, ¥ind at least two. ﬁumbers, ncither being unity, whlch are simul-
taneously square an driangular.
12. A vendor had\b quantity of cggs for sale. To his first customer he

I sold half of his eged plus half an egg, to the sceond customer half of the

eges left plis Hplf an egg, and continued to sell them in this manner.
After s ervn{g&;m custonmers he had sold all of his eggs, How many did
he h..wa m‘the beginning?
13, Wetermine a set of weights to be used on balancing scales with the
weighing pan and the weight pan separate, The load varics from 1 to 63
wunds, and not more than 6 weights arc to be used.

\: ./ 14. Prove that every integer can be represented, and in one way only,
/in the form

Be 6397t d e3° - -+ Foea

where e, e, . . . , ; can have only three values: 0, +1, —1.

1B. Determine a sct of four weights which muke possible welghing loads
from 1 to 40 pounds if weights can be placed on either of the pans. How
ean you genersglize this problem?
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16. Two numbers, for instance, 23 and 35, can be maltiplied as fol-
lows: Divide 23 repeatedly by 2 as far az possible, always rejecting frac-
tions; and correspondingly double the other number 35, As a result we
have two eolumns of numbers:

4 B
23 35
R ' N <\
5 40 \Qs
2 280 @)
1 360 \}y

Take the sum of numbers in eojumn B to which e orrespouﬂ\o}d numbers
in column 4. Then the sum N ,

3 + 70 + 140 + 560 _@

‘gives the requested product of 23 hy 35. Bkﬁ oﬁ‘tmg to representation
of nurabers in the binary scale, prove t}mt dhigrule is general.
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CHAPTER I1

DIVISIBILITY AND RELATED TOPICS N\

N ¢

RGN

1. Theorems Concerning Divisibility. If a is as~ ﬂl?l“l‘tlple
of b; that Is, if there is an integer ¢ such that a —‘br we §ay
also that e is “divisible” by b, and that b is a, “dlvl‘-«)]‘ or a
“factor’” of @. Thus 12 is divisible by 3, “S}{lﬁta 12 =3 -4
Also we may say that 3 is a divisor of 12. \}M¥'is a divisor of a,
then —b will also divide a, so that potive and negative
divisors occur always in pairs. For ‘[*fhm reasen usually only
positive divisors are considered. Fnﬁm the coneept of divisi-
bility the following simple proposmonb follow immediately:

1. If @ is divisible by ¢, ~then ab is divisible by ¢. TFor
a = ¢f where dvisr.dhr amitbgmy drg ihypothesis; consequently
ab = (cd)b = (bd)e, and 3 ab is divisible by c.

2. If ais dnnstble by b and b is divisible by ¢, then a is
divisible by ¢. JIn{other words, if b is a divisor of a, then
every divisor of b\is\a divisor of @. For, by hypothesis, ¢ = bd,
b = ee, whorc:d »and e are integers, Consequently a = (cedd

= {ed)e, apd'e is divisible by e. '

3. If btk a and b are divisible by ¢, then a + b is divisible
by e. \j:'\or a = ¢d, b = ce with d, e integers. Hence

A\ atb=cd+ce=(d+ e
»\15 Elivisible by e.
’ Combining 1 and 3, we derive the following proposition:
4. If a, b, ¢, . .., m are integers divisible by n and e,
8, v, . . ., are arbitrary integers, then
ae + 08 +cy + - - - +mp

is an integer divigible by n.
24
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2. Commen Divisors. Given an integer a, which ean be
assumed to be positive, we next consider the problem of
finding all its divisors. As obvious divisers ore always has
1 and a. To find others, if any, it suffices to test by actual
division the remaining numbers 2, 3, . . ., a — 1 and see_
whether we find among them divisors of a. The problein
thus can be solved in a finite number of steps, but this thog:
retical solution requires too many trials when applied to
numbers which are somewhat large, and it is degirable to
abridge it by eliminating trials which are a pridei useless,
In & later chapter we shall consider methods fof feducing the
number of trials considerably. It must suffice now fo say
that the problem of finding all the divisors f a given integer
in practice may be very difficult whe{' this integer is large
and it Is required to exhibit actuallyal} of its divisors. Con-
sider, for example, the number 100/895,598,169, which was
sent to Fermat by Mersenne with a request for its divisors.
It is a tribute to Fermat’ﬁ;ﬁrl;tﬂélm-aﬁh%&%;%’ fble to answer
immediately that the number® was the product of 898,423 and
112,303 both of which cehitain no smaller divisors other than 1.

In general, in Ilth}r theory a problem is considered!as
solved when what<ls “sought, can actually be exhibifed in a
finite number of Bteps, but among various methods of solving
the same prohicfn those which require a smaller number of
trials are gobwidered more nearly perfect.

A nufiber which divides several intepers is called their
“‘comfon divisor.” For instance, 2 and 3 are common
d%visbrs of 12, 30, 72, and 120. The problem of finding all

mt\éth.mon divisors of several integers can be reduced to the
N\ previously considered problem of finding all the divisors of a
single integer. In fact we shall prove presently that among
the common divisors of several integers there is one, say D,
such that every other common divisor is a divisor of D and,
viee versa, every divisor of D is a common divisor of the given
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integers. The particular common divisor D for obvious
reasons is called the “greatest common divisor” (abbreviated
g.c.d.). If the given integers are denoted by a, b, e, ...,
m we shall consistently denote their g.e.d. by the symbol
(@, b,¢, . ..,m). Thus ~

(12, 30, 72, 120) = 6, A

In fact, by actual trial we find that all the divisors ef 19“are
1, 2,3, 4,6,12.  Of them only 1, 2, 3, 6 divide thg reMaining
numbers 30, 72, 120. Again the common diuiéof‘% 1, 2, 3
divide 6; hence 6 is the g.c.d. of 12, 30, 72, and, 120.

3. Euclid’s Algorithm. In order to proyesthe existence of
the greatest common divisor, we shall copsider first 1he case of
two integers ¢ and b, and we ghall use 1{1(1 process of succeszive
divisions known ag “FEuclid’s Algofit im,” for it oceurs in
Fuclid’s “FElements,” Book _VII’,.'Prép. 2.

The word algorithm, like sexw};gil' other mathematical expressions,

comes {rom the, depbigrholus s wEpaen of Al Khowarizmi, the name
of an Arabian mathematicianef the ninth century, whose writings were
prominent in bringing the pfdsent method of numeration to the Occident,
During the middle ages:th} word algorithin referred simply to the use of
Hindu-Arahie num avks;;' but at present it applies to any formalized
procedure whereby réquested mathematical objeets are found by
definite ehain of operations, euch operation requiring the results of preced-
ing ones, ) .:\ 4
Let q"\‘z-.\i; and b > 0. Dividing @ by b, suppose we got
the q,%itiént q1 and the remuinder b, so that
&

TN a = bg1 + by; 0 =6 <b.
N\N"® . .

“\Now, if b, = 0 the operations are ended. Ii, however, b; > 0,
Wwe can go one step further, dividing & by 5, and obtaining

b = bige + bs; 0= by < by )

where ¢ is the quotient and b, the remainder of the division,

If it happens that b, = 0, the operations are ended; otherwise
we go one step further by dividing b, by b, and obtaining
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b1 = begs + by 0= by < b,

Unless &5 = 0, in which case the process ends, we car go one
step further, dividing bs by b, and can continue this as long as
remainders in successive divisions are positive,
Now
b>by>bs>bs >

& a sequence of decreasing positive Integets which canrkoi Be
coniinued indefinitely; consequently Euclid’s process/must
end, and this happens only when we come to a certdin‘remain-
der b, which divides the immediately preced{ng remainder
Ba1, 80 that

\

b'»-] - bngn+l

where g.1 is an integer. As a TPSUIKWE have the following
gystem of equations:

a = bg, -+

b= !);Q"i + bz

b1 —_-.,bz'q’s"{_ bs
\-.r:w‘w..‘q:b'l:algli-bx_'al_'y,org_in {1}

bﬂlg = bn—igﬂ + bn
'{"'Qﬁ—l = ann—{-l-

Now b, dividesibn_1; dividing bang, and b, it will divide
bis (by (4), Seo. 1). Again, as b, divides b, and b,_s, it
will divide ,¢¢ Continuing the same reasoning and advane-
ing upward- 4n the set of equations (1), we finally come to
the c<\"‘hl'510n that b, divides ¢ and . Thus b, is a common
divigor'of ¢ andb.  Now let ¢ be any commeon divisor of 4 and .
Diwdmg a and b, it will divide &, = & — by, (by (4), Sec. 1).
Agaln, asc leldeS b and b, it will divide bs; continuing the same

\ reasoning and descending downward in the set of equations
(1}, we conclude finally that ¢ divides bs, Thus b,, being a
common divisor of a and b, is divisible by any common
divisor of these numbers., Conscguently b, is the greatest
common divisor of ¢ and b.
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Example. Find the g.c.d, of 78,606 and 19,332. By applying Euclid’s
algorithm, ag deseribed above, we have

78,696 = 19,332 - 4 + 1,368

10,332 = 1,368 - 14 -+ 180

1,368 = 180 -7 + 108 )
180 =108-1+72 N
108 =72-1 436 \

72 =362 R\ \)

Cousequently the g.c.d. of 78,606 and 19,332 is 36. All other common
divisors are divisors of 36; by trials we find that these dlwqofs ArG

1,,3,4,6,9,12,18,36. L%

Tuelid's algorithm, as to expediency and convenience,
leaves nothing to be desired. All urﬁlef'(‘&sary trials are
climinated in it except unavmdable\frlals which oceur in
the process of division. It afforfsvan example of an ideal
solution of a numbcer-theoretic problem,

4. Greatest Common Divisor of More Than Two Numbers.
Let vs considermaprihnesarginkers a, b, c.  Take two of them,
for example, @ and b, ~an’d let D be their g.e.d. Now any
commeon divisor of a.r&, ¢, beeause it divides a and 5, must he
a divisor of D. R&{ng a divigor of D and ¢, it will leIdE‘ their
g.c.d. ¢

\“ Dy = (D,e).
But I, di;x«fding D and ¢, will itself be a common divisor of

e\ “Thus not only does D, divide a, b, ¢, but any common

dw]sdf of the three divides Di; consequently D) is the g.c.d.
of¥ry b, . It can be found by Euclid’s algorithm in two steps:
-~ ﬁrst we determine D = (a,b) and next Dy = (D,e).

Suppose we have four numbers a, b, ¢, d and let D
= (a, b, ¢). Every common divizor of a, b, ¢, d is 2 common
divisor of a, b, ¢ and consequently divides D:; but dividing
d and I}y, it divides their g.c.d.

Dg = (Dl ,d).
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But D, dividing D, and 4, is 2 common divisor of @, b, ¢, d;
hence Dyis the g.e.d. of ¢, b, ¢, 4. 1t ean be found by Euclid’s
algorithm in three steps: Tirst we determine D = (a,0b),
next Dy = (D,¢), and finally D, = (Dy,d). 1t is clear that
in the same manner we can deal with 5, 6, and more num- »

bers. In general, if we have n numbers ¢, b, ¢, . . . , &, ]
we can determine their g.e.d. in n — 1 steps; that is, we deter\-
mine successively N

L W

D = (a,b); D, = (Dc); Dy = (Dy,d); \‘ C3
Dn—s = (D'n---i;k); Dﬂ—2 = (D”"EIQ‘\.

and D,_; will be the g.ed. of @, b, ¢, . . .k i

//\.

Example. Find the g.o.d. of 1,032, 476, 95245
Euclid's algorithan four times, we find 38

:} \

4, 9,261. By applying

{476,1,932) = 28; {28,952} = 28'» ”“ (28,504) = 28;
{28,9,261) =

consequently (476,504, 95,,»,}‘,9?@5%39}&,“’5, org.in

Note. To avoid possible misunderstanding it must be remembered
that in establishing the efisténce of the g.e.d. of several numbers we
assume that nonc of ther 1% The number 0 is divisible by any integer;
consequently if we a&@m 0 to the numbers ¢, b, ., &, none of which
i 9, then

.(\'a,.b,c, ek 0) =, b0 .. s B

In particulgtyfe,0) = aand (1,0) = L.
p s
5. Theorems Concerning Common Divisors. Iiuclid’s algo-

nthm not only enables us to find the g.c.d. of several numbers
byt also proves useful as a basis of the proof of some important
“\theorems which we shall now proceed to consider.

TaroreM 1. If two numbers ¢ and & with g.ed. D are
multiplied by a positive integer m, then the g.c.d. of ma and
mb will be mD. In other words

(ma,mb) = miz,b).
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Proor. The proof iz based on a very simmple remark: If
on dividing a by b we get the quotient ¢ and remainder r, so
that

a =bg+r,

then on dividing ma by mb we have the same quotient hut the™\

remainder will be mr. In fact we have e
. ¢\
ma = mbg + mr e\

and 0 £ mr < mb, so that mr 35 the remainder inniﬂie"gdia-'i;-:ion
of ma by mb. Now suppose that after applyile BEuclid’s
algorithin to a and b we get the following setMof ¢quations:

a=bg+ b N
b = bigs 4- b ©
boy = bngfbj—'l?:
On multiplying them by m, we'have
www,dbran#{gl‘gy?ﬁé t%.u:i— mbs
1th, = mbigs + mbs (2)
( :

3

A\ \abﬂ—l = mbnq:m-{—l-
But aceordingtd-the previous remark, mb, is the remainder in
the tﬁvisiog{olf;\?ﬁa by mb; mbs 18 the remainder in the division of
mb by mlif/etc. Consequently (2) is the set of equations in
Euc]id{s;aigorithm applied to ma and mb and mb, = (ma, mb).
Buj:.ﬁb} = {1,b); hence the theorem is proved.
" ;:S[‘i{EOREM 2. Let m be a common divisor of & and b; then

W (5,3)5@.

m m ki

¢ b
—3—~ ] = 7}
m m

Puoor, Let
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then, since ¢ = m, b= mi)- by Theorem 1,
m m

and

which proves the theorem. S )

CoroLLarY. Letdbethe g.c.d. of a andd. By Theorem 2
the g.e.d. of a/d and b/d will be 1. Now two numbers with
ge.d =1 are called “relatively prime” numbérs. Henee
when two numbers are divided by their ged)the resulting
quoticnts will be relatively prime.

The value of the fraction a/b is n@t\(’hanged when itg
numerator and denominator are divided by one of their
common divisors. Dividing a and(®'Dy their g.c.d., we get
the relatively prime quotients on and 8. Hence any fT&CtiOII
a/b may be replaced by an irraducible fraction «/8 in which
the numerator and den‘?ﬁmﬂﬂﬁﬁ“ é‘ﬁéﬁt&\‘ely prime.

TreoreM 3. If several numbers a, b, ¢, . . . , k are multi-
plied by the same 1nteg~er m, then

{ma, mb, mk\\ c,mk) = mia, bye, . - ., k).

Proor. It Sufﬁces to consider three numbers ¢, b, ¢. To
find Dy = (b ,¢) we seck in succession D = (a,b) and
D= (D,‘a) Now, by Theorem 1, {ma,mb) = mD, and by
the sa\e ‘theorem (mD me) = mDy; consequently
“\”,"’ {ma,mb,me) = mD,,

\ anoh was to be shown,
THeEoREM 4. Let m be a common divisor of several integers

ab,e, ... ,k;then

f(a b c E)z(a,b,c,...,k]'
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Proor. This theorem follows from Thecrem 3 in the same
manner that Theorem 2 follows from Theorem 1.

CororLary. Several numbers are said to be without com-
mon divisor (meaning without common divisor > 1} U their
g.e.d. = 1. From Theorem 4 it follows that, on ividing
several numbers by their g.e.d., the resulting quotients wild
be numhers without common divisors. O\

6. The Fundamental Theorem of Arithmetic. I'r o the-
orems egtablished in Bec. 5, it is casy to deduce a ’rheure nt which
is rightly called ihe fundamental theorem of :Lnthm( thc:

TreEOREM 5. If the product ab of two 1ntegeré\l§ divisible by
an integer ¢, and ¢ and b are relatively primé6leén o is divisible
by ¢ PN

Proor. Bince \

(b,C) = Ift' g

by Theorem 1 we have o\ &
(ab, @c) = q.

Now ¢ dividsy &5y gyl ‘i%%t qug and ae, that is, ¢, i3 a
commmon divisor of ab and ac. Consequently it divides their
greatest common dimt"s&, which is a.

TaroreM 6. Each of the numbers a, b,e, ... ,e fheing
relatively primé bo m, their product will be relatively prime
to m, also, W&/

Proor./nEonsider first two numbers @, & which are both
relatnx&y prire to m; that is,

(o,m) = (b,m) = 1,
By Theorem 1
\V (ab,mb) = b

The g.c.d. of ab and m will be a common divisor of ¢b and mb
and consequently will divide 5.  But being a common divisor
of b and m it must divide 1; hence (eh,m) = 1. If there
are three numbers g, b, ¢ each of which is relatively prime to
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m, their product ebe may be considered as a product of two
factors ab and ¢. Now it has been proved already that ab and
m are relatively prime numbers and ¢ is relatively prime to m
by hypothesis; consequently {eb)c = abe is relatively prime to
m. By proceeding in the same way, the proof can be extended
_to any number of factors. .
TeEOREM 7. If each of the numbers @, b, ¢, . . . , ¢, Fis))
relatively prime to each of the numbers o, 8, v, . . ., X,;ﬁhcn’
abc - - - ¢f is rclatively prime to aBy - - - A (n’."ﬁ
Proor. By Theorem 6 the product abe - - - &f i8xelatively
prime to each of the numbersa, 8,7, . . ., A Bﬁ; the same
theorem a8y - - - A will be relatively priméNte”abe - - - of.
CorouLary. If we agrec that all the numbers ¢, b, ¢, . . . ,
e, f are equal and their number is m; and.alse i all the numbers
e 8, % ..., *are equal and their’mRumber is n, then from
Theorem: 7 it follows immediately fhat since o and a are
relatively prime numbers their{powers ¢” and a* will be
relatively prime also.ww.dbedglibrary.org.in
This eorollary may be uged to prove that a root of any power
» of a positive integer A s either an integer or an irrational
number. For suppese.that this root is represented by the
irreducible fraction #¥s. Then

‘(;) =4 or =4
.’\n

whencenif_follows that 7= is divisible by s and consequently
(r*,s)&Ns. But by the coroliary (r7,s) = t and so s = 1,
4 ,ff 7, that is, 4 is an nth power of an integer. Consequently
‘I’ is not an nth power of an integer, v/A4 must be an irra-
fonal number.
The following theorem will find frequent applications:
TerorEM 8. If g and & are relatively prime positive
integers and their produet is an exact power ¢* of an integer,
then @ and b themselves are exaet nth powers.
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By hypothesis
ab = c*,

Let {a,¢) = a anl @ = yea, ¢ = Ba, where, by the cerollary
to Theorem 2, Bee. 5, v and § are relatively prime integers.
After substitution and cancellation of @, we have O

b = Brar,

'\
But y and g* are relatively prime numbers and 8¢ vivides
vb. By the fundamental theorem, 8 must dividé\&)and we
can set '\’\.“

b = 8. &
On substituting this expression for b andjs'}ﬁcelling 8¢, we get

b 3

yd = o\

N

Now e and d must be relatively pfign%f numbers, for their g.e.d.
divides @ and b and conscquently must equal 1, sinee ¢ and
b are rela-tivt;}\x,mimpaulﬁil@g@iﬁ:’-’@}rﬂivides vd and is relatively
prime to d, it must divide v, so that we can set

AN Y = ol

On substituting Ahis'expression into

:‘1\ b -Yd = "l
and cangelljng "1 wo have
Q =1,

’,,{t@éﬁce e = d = 1since e and d are positive infegers. Finally

¢ = vya = a®, b =dfr =g
and
c = af.

Nore, If the signz of ¢ and & are not specificd hut it is expressly
assumed that e # 0, then from the preceding proof it follows only that
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e=d = £1. TIn other words, if b = ¢», ¢ 3 0, and a and b arc rela-
tively prime, then two integers @, § can be found such that

¢ = af, e = ta, b= £
with signs corresponding,

7. Common Multiples. A number which js divisible by{\
each of the given integers a, b, ¢, . . ., f is called theiz
“eommon mulfiple.” For instance 60 is a common nml’tﬁ:ﬁa
of 2, 3, 5, 15, 20, 30. Let us first consider common muitiples
of two integers @ and b, If z is one of them, it must be
divisible by a, and we can set o\'{,'

= ok

where the integer & must be so chosen a,s’,t-}"make ak divisihle

by b. Now let d be the g.c.d. of a sud\b and
a=ad, &g

Since ak = dak is divisible b«‘;ii_',sé, ak must be divisible by
8. To fulfill this co\“ﬁ‘ﬁ“ﬁiggy MHErH 1Y (by Theorem 5,
Sec. 6) and sufficient that % should be a multiple of 8, say
O k=g
\: '
where { is an ar:bi:c.r ry integer. Thus the general expression
for all the mul\tiples of @ and b is
:.\:,,.’ ab
N\

“rhggré\t is an arbitrary integer. The particular common
mitltiple of & and b,
@ i ab

\‘; M:-cf’

is numerically the smallest excepting the trivial multiple 0.
It is called the “‘least common multiple” (abbrevisted l.e.m.)
of @ and b, and from the general expression for common multi-
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ples it is apparent that all the common multiples of @, % are
multiples of their Jeast commeon multiple M, which we shall
also denote by the symbol [a,b].

Now we turn to the consideration of the common multiples
of threc integers @, b, ¢.  Any such multiple, being a multiple of
@ and B, is a multiple of their Le.m. [a,b] = M. But since it
is algo a multiple of ¢, it will be a common multiple of M gud
¢; that is, a multiple of the Lem. My = [M,c] of M m(\f
Now M| is a particular ecommon multiple of ¢, b, ¢ and*of all
such multiples numerically the smallest. It is t-alled the Lem,
of @, b, ¢ and will conveniently be denotod lm‘the symbol
[@,B,c].

Other common multiples of @, b, ¢ ara\anultiples of (heir
Lem. Let us take the case of four nu bérs a, b, ¢, d. Any
common multiple of a, b, ¢, d, beingamultiple of a, b, ¢, i3 a
multiple of M = [a,b,c] and d; comequmtlv itisa muliiple
of My = [M.,d]. The number M',; is a common multiple of
a, b, c d and\n{)frvmddﬂllranhbhaﬁmt gimumerically the smallest.
It is the Lem. of @, b, ¢, d whd will be denoted by the symbol
[a,b,c,d]. Evidently Qie sama reasoning may be extended
to 5, 6, and any,pduiber of integers. In general n given
integers @, b, ¢, 5, . V', j, k posscss the least common multiple

la, b, ¢, . . . pshk], which can be determined ag the last in
the sequencedofnumbors
M= [ pD My= M, M= My, .
‘.§~ Mus = [Ma_s,j), M. o= [;14,1_1,?{1.
Example. Find the Lem. of 6, 14, 18, 30. We find suceessively
.~\’~
e\ <14
O 6,14, =2  [6,14] =6T =42
18+ 42
(18,42) =6 {18,42] = 86 = 126

12
(30,126) =6 {30,126] = I

= $30.
The lLe.m. of 6, 14, 18, 30 is therefore §30,
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One particular case deserves speeial consideration. When
the integers arc relatively prime in pairs; that is, when each
two of them are relatively prime, the lLe.m. of them is equal
to their product. To prove this take the case of four integers
a, b, ¢, d BSinee (a,b) =1, we have M = ab. Again, a
and b being relatively prime to ¢, we have {ab,¢) = (M,e) =
and M; = [M,c] = abe. Further (abe,d) = (M,,d) = 1, and
eonsequently M, = abed, but M, = [a,b,c,d]. ¢\

Combining this remark with the fact that any coriinbn
multiple is divisible by the l.e.m., we can draw the ifoﬂpwing
often used conclusion: An integer which is divisible by each
of the numbers a, b, ¢, . . . , k, which are relagiwely prime in
pairs, is divisible by their produect. ’

NY;

Note. The ease of integers relatively pri g 1} pairs should be dis-
tinguished from the casc of integers mthwtx eommon divisors. For
instance, 2, 4, 8, 9 are integers without cﬁmmon divisors, but not rela-
tively prime in pairs. »,:'

8. Solution of z? “’Wﬂ’—d@ﬂ?ﬁbmwggm,m In very remote
times ancient _T‘gyptlans and Chinese were familiar with a
right-angle triangle whgse sides had as lengths the integers
3, 4, 5, and they used dhis fact for the construction of right
angles in their surv ng operations by stretehing in a proper
manner either three ropes of the respective lengths or one
rope with khotd marking off proper spacings. Later the
general pro’blém of finding right-angle triangles whose sides
are exp Gsed by integers was a favorite one with Pythagoreans
and latér Greek geometers. Aucient tradition attributes to
Pythagoras himself a solution expressed by the numbers

9 w1, wttl
2 2
where n is an arhitrary odd irteger >1. The problem, by

virtue of the Pythagorean theorem, amounts t¢ finding all
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systems of p0s1t1ve integers x, ¥, #z which satisfy the Pytha—
gorean equation”

x4y = 22, (:‘1)

1t suffices to consider only primative solutions; that is, solutions
consisting of integers without common divisors. For, froma,
primitive solution a, b, ¢, by multiplying these numbers by an
arbitrary integer M, we derive another solution P\

Ny

z = Ma, y = Mb, z= Me ":”:’«.

N

. 4% . s
with M as the g.c.d. of z, ¥, 2. Conversely, eashnonprimitive
solution can be derived from some primitiwgvSolution in this
manner. For, if M is the g.c.d. of x, y 3 wc can set

x = Ma, Yy = M‘rb,":‘\z = Mec
and then o\ -

www.dbra Lﬂfbﬂ_a}g'g t;?g.??l
where a, b, ¢ are numbe;rsﬁfithout common divigsors. Thus,
seeking solutions of eqfafion (A), we can confine ourselves to
numbers without, g@mimon divisors. Integers z, y, z will
then be relatively}}ime in pairs; for consider the pair , ¢ and
let d be the g.odd of 2 and . Since d2 divides the left-hand
side of (A} %Avill be divisible by d? and consequently z will
be dwmbl{\by d. Henee z, y, z are divisible by d; however, the
greate\qumon divisor of z, ¢, 2 is 1 and so d 1. Simi-
]arly wo can prove that x, z and y, # are two pairs of reletively
ptime numbers. Bince x and y arc rclatively prime they
<\baifmot be beth even, but neither ean they both be odd.

The proof of the latter statement is based on a property of
odd integers which, simple though it is, must be stated herc
explicitly. If o is an odd integer, we can set a = 2n + 1;
then

=1+ 4n{n + 1).
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But of two consecutive integers n and n 4 1, one is even:
henee the product #({n + 1) is divisible by 2, and 4n(n 4+ 1)
iz an integer divisible by 8, say 3N. Consequently

= 14 8N;

ihat is, the square of an odd integer, when divided by 8, leaved S
the re mamder 1.

Now suppose that, in equation (A), z and y are botLI m:ld
'Then W

L 3
~

=1+8F ¢ =1-+38¢ m":‘.
and _ ,\\
2t =af oyt = 2 4+ B8R 3

Thig shows that 2z must be even, but t&@’square of an even
number is divisible by 4, whercas 2 +\8R is not divisible by 4.
Of the two numbers z, ¥, thereforp “one is odd and the other
even, Without loss of generahty we may suppose that y is
even, x odd, and = negpwza}x a%%ral§ow equation (4) can
be written as follows: N

7 AL (_sz)
ke 2 2

Integers i—'z x\é}z_ arc relatively prime because their

g-c.d. dividcg; ’the two relatively prime integers

\.F. — z+z g —1x
__:E+E x,_.z’ -_._h_2—=
\“,

Ma.l\eover they are hoth positive because they have the same
an and the first of them is positive. By Theorem 8, Sec. 6,

\ we conclude that
2+x z2—x

2 P

whence
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2 = r? — g ¥ = 2rs, 2= rt 4 g2

Here r and s are two positive integers, necessarily relafively
prime and of different parity; morcover, r > s, Conversely,
with 7, s subject to these conditions, z, ¥, z will constiluie 5
primitive solution of equation (A4). That this equation is
satisfied follows from the identity \
(2 — s -+ (2rs)? = (r* + )2 \"\ A

Furthermere z, ¥, 2 will be positive integers, and it wmmm to
show that they are without common divisors. Ll‘t # be their
g.c.d.; then 4 will divide the numbers \ v

z 4+ & = 2r% z — x = 287, y—-2rs

But (r?,8%,rs) = 1, since 72 and s2¢ }}re relatively prine;
hence (2r%,2s%,2r8) = 2, and it follovg\& that d divides 2; that
,d=1lord =2 Butd cannot‘bi" 2, since z and x arc odd;
the only remaining possibility, js i = 1.

From the dls@mmhlahlfbthwwm@mt all the primitive solu-
tions of the Pythagorean@ég}liation {or primitive Pythagorcan
triangles) are given bythe aid of the formulas

T =r* .‘sz\ y = 2rs, z2=7r4 &
where r and s are}ny two relatively prime numbers of different

parity and r, > 8, Ag an cxample, we ses that when v = 2,
s =1, the rebult gives the Fgyptian triangle 3, 4, 5.

Exercises and Problems
ls%wgcd ofa 4+ banda —~ biseitherlor2if {g,b) = 1.

!
\ 2 Show that the fraction % i expressed in simplest terms if
a\

\V Jab' — a'b = %1.
3. If @, 8, v, & are four integers and o8 — 3v = +1, then the g.c.d.
of the mumbers
m = s -+ Sh
n = va -+ &b

is the same as that of a and b.
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4. The g.ed. of @ + b and g — ab + b2 is either lor 3if {a,b) = 1.
6. Show that (¢ + b, ¢ — b, ab} =11if {g,}) =1
6. Show that o* —ab + 0% and a* — a% 4 a®t — gb? 4 b+ are
relatively prime if (a,b) = 1.
7. Two distinet aumbers of the form a®" 4 1, o + 1 are relatively
primne if ¢ i3 cven, and have the g.e.d. 2 1if a is odd.
B. Make g table of all the primitive right triangles in infegers for, ¢
which the hypotenuse does not exceed 100. )
8. The sum of two numbers iz 5,432 and their Le.m. 35 223,020, £ &
the numbers. Ans. 1,652 and 3{780.
10. Let s? be the greatest sguare which divides . Show that Jf d% is
any squarc dividing a, then s is divisible by 4. "G
11. The sum of two fractions '\\
+ N4

ol
=P+

\.
in lowest terms cannot be an integer unless & &
12. Show that the most general qulut.mnmf he equation ab = cd. in
integers, provided {z,8} =1, {¢,d) = 1, ls gwen by

)

w ‘“’z“’&‘i J’a ]_:a:ld l Ly b;agy.org,jn

where a, §, ¥, & are arbitrarynicgers relatively prime in pairs.
13. Show that the summg

+ &\J 1 . 1
¥t n
for n > 1 I8 never an integer.  Indication of Proof: Tet 2%(2k + 1) he
that number of fhe sequence 2, 3, . . . n which is divisible by the highest
power of 2.f ere cannot be another number in the same sequence
d1v131bie\x\!za
14, Jhe sum
\ L .
...\3"\:' rp_ p+1 ptn

\ W

\ 18 a fraction which, when reduced to simplest terms, has an even denomi-
nator.
15. Show that in the serics of Fibonacei,

1,2,858 13,21, 34, . . .,
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in which cach torm is the sum of two preceding terms, two conseontive
terms are alway# relatively prime.

18. Ancient Egyptians used to represent fractions as sums of unit
fractions; that is, fractions with the numerator = 1. One method of
doing this can be based upon the following remark: Let o/b be o fraction
in simpleat terms with its denominator > 1. T 1/z is the largest ur}j{
fraction gontained in g/b, then \

el O\

[ P O -
where @’ /6" iz a frzetion in simplest terms and @' < a. B{‘presmt in
the Bgyptian manner the following fractions 584, 327¢m0" ‘/140

17. Find formulas exhibiting all the primitive solutl the equation
242yt =20 \
with positive 2. ,\\\,
Ans. = £(r2 — 282,y = 2rs,<(=, vt 4 258 (r, 23) =
18. Do the same for the cquation @)
52 4 3y ‘=‘z“‘~

Ans. .s.

{a) = = (2 wape.},dbﬁmb@@rmmf r, § integers of different
parity and (r, 3s) = 1.

\,

7 — 35“ r? + 35t .
b 2= :t K"e rs, Z = —T; 7, 5 odd integers and
\\ 9 (r, 38) =
N\
“ »
t",xn'
» N\Y;
:0 ul‘
o &/
\O
O\
N
:0'\‘%
~\J



CHAPTER III

EUCLID'S ALGORITHM AND DIOPHANTINE (A -
EQUATIONS OF THE FIRST DEGREE .\~

1. Lamé’s Theorem. A liftle practice with the &Eiglidean
algorithm is sufficient to convinee anyone of i"t(&k’pediency.
The number of divisions required to find $8€ g'c.d. of two
numbers, even when these numbers are large, is small in
comparison with the magnitude of ,the” numbers. This
observation naturally leads one to:\vg\onder whether it is
possible {o establish a priori the iljpﬁft for the number of
operations which are necessary‘,tdi.ﬁnd the greatest common
divisor. The answer tovbhitbisugiberybatgitheorem due to
Lamé, A\ )

Gabriel Lamé (1795187 j‘“was an outstanding French mathematician
and enginecr chiefly kr}@’ﬁf;l for his important contributions to mathe-
matical physics, THetgh not primarily inferested in number theory
he loft o few neat QOIlt-rlbutiODS to this branch of mathematics.

Lami’s TEEOREM. The number of divisions required to
find the gedsof two numbers is never greater than five times
the nn [3Er of digits in the smaller number.

Préor. Let
N a = by + b1
\“\ ’ b= bigs+ b2

v

bpa = bn_ﬂn + by
bn.._l = bngn-p.
be the set of divisions in Euelid’s algorithm applied to the

numbers ¢ and b{¢ > ). The number of required divisions
43
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isn 4+ 1. Quotients gi, ¢z, . . . , ga &re all 2 1, but the last
quotient gu41 1s = 2, since b,y > b,. Thus the preceding set
of equations implies the set of inequalities

bn 2. ]--_n bﬂ-—l g_ an, bn—‘z g bn—l + bm

bacs Z baez + bay, Ce bz b+ b
Now consider the Fibonacei serics O\
N
u =1, ue = 2, us = 3, Uy = 9, « N\ -

. z’n‘
in which the first two numbers are 1 and 2 and, ench tollowing
term is the sum of the preceding two, so tha{q’)\ ‘general

Un = Une1 + Ugoz, N
We have ' K2
b‘“ = 1, brgwi i Ua
and \ \J
bn—ﬂ g bn_]_ + b,:sg;’é{,l + Mg = ua_
Again, www.dbraulibrary org.in

bas Z bag P Z us + us = Uy,

and so in general :m’\»\

\\" b = Wit
consequently A\
'l Unt1 = b,

s P

0
A/

and thig :i{?}é(']uality will serve to establish an upper lmit for

the nu@})e; of divisions » + 1.

L s compare Fibonacel’'s numbers

O 1,23, 58, ...
N\ to the powers
LEES &8 ...
of the root

146
=
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of the equation

#=f+1
In the first place & < 2; consequently
£2=§&41 <utur = us

Again, N\
B=24+f<u+ u =ty e\
) “\\..:'.
and so, in general, O
& < uppa. N
The inequality D ’
Un-i1 é b \\:)
implies \
Eﬂ < b xo\\\.l
whence (v
log b \'
"< logg

But if the number of djgltwoiﬁbaalmthﬁlbl g.in
b < 10?” log & < p,

and on the other han{i\
\\ log £ > §;

..~,

‘\, n < bp

and n -!—(1\”4 5p. This completes. the proof of Lamé’s

theor
2. Qhe Least-remainder Algorithm. Euclid’s algorithm is
bqsed on the remark that, given two integers a and b > 0, we

#N\pan set

A a="bg4r,
where 00 £ r < b, Admiiting negative remainders, we can
arrange the division so as to have

a=bg+1)— (-1

henee
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with a negative remainder — (b — ), which will bo less than
b numerically provided r > 0. And the division ean always
be arranged so as to give a positive or negative remainder
numerically not exceeding 14b, for of two numbers » and § — »
one at least is < 14b, and they both ean attain this Limii only
if »=14b. Thus, when @ is not divisible by b, choosifgs
€ = *1 arbitrarily, we can set A
a = by + er :'\,\"’
where 0 < r < b, With a proper choice of ¢ wg}z;m ke
r = }4b, and such a division may be called ““@ivision with
the least remainder.” From these remarks it‘}s\évident fhat
Huelid’s algorithm can be modified bynallowing in cach
division cither positive or negative remiainders. Thus the
gencral scheme of Euclid’s algorithm.$ilt be represented by a
set of equations AV
a4 = bql ‘i’:‘.elﬁl
www.dbr%uﬁbb:%tl'gghﬂ

bm—Q“::’E;;n—lgm + Embm
bm\"f — bm(;’m+1

where ¢, €, . . . ,'\;e’,};} arc positive or negative units, as we
please, and b >y > by > - -0 > b, > 0.

Of the possib;le’ arrangements of Euclid’s algorithm, that in
which the {&ust remainders are always used is cspecially
important{” We shall eall such an arrangement. the ‘“‘least
remaizidﬁ:;f algorithm” (abbreviated L.R.A). For instance,
thefolowing two schemes represent the ordinary method and

_HWLRA:

\V 253 =122-24+9 253 = 122-2 40
122 =9-13 + 5 122 =9-14 — 4
9 =514 9=4-241
5=4-141 4=1-4
4=1-4
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The L.R.A. in the above example, and in all others we may
try, certainly is not longer than the ordinary algorithm. That
this is a general and valuable property of the L.K.A. was
stated first by Kronecker. Iresently we shall prove this
property of the L.R. A, but at first it is necessary to establish
an auxiliary proposition.

Leopold Kronecker (1823-1891) was one of the greatest represen't-?a—“‘\
tives of algebrs and number theory in the nineteenth century. { N

3. Lemuma. Let a and o, be positive integers and 60 < .
Then the L.R.A. for the pair e, @, is not 101159\1“\]5han the
L.R.A. for the pair ¢« and & — a,. O

Proor. Suppose, at first, ¢ = 2; then neegssarily a; = 1.
Then the least remainder algorithms forf#hé two pairs will
coincide, since the pairs are ident-ical.;'jbet a = 3; then the
only choice for a, is 1, and the L.R.A)for the pairs 3, 1 and
3, 2 are respectively Q

3 =1 - 3% y;ibeylibrayy pryin
) Nt 2=1-240
the first being shorter,{ Wext take a = 4; then a1 =1 or
e, = 2. In the lagtcr.ease the two algorithms are again
identical. For the p\alrs 4 1 and 4, 3 they are respectively
451140 4=3-1+4+1
\“ 3=1-3-410
and the firsfbis shorter again.
We 11%{& ghown the lemma is true when ¢ = 2, 3, 4. Sup-
posesdow that this Jemma has been verified for all values
Jof(@which are less than a given number L. Then, if we can
prove that the lemma is true when a = L, it will be proved
to be universally true. For, when this erueial point has been
established, we may take ¢ = 5, and the lemma will be true
sinee it ie frue for @ = 2, 3, 4. Being true forae = 2, 3, 4, 5,
it will be true for o = 6, and s0 on.
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Now suppose that @ = L, 2a, < L, and let the beginning of
the L.R.A. for a, a, be

a = 1 1 €le, 2q; £ ay.

As to the beginning of the L.R.A. for the pair @, @ — a1, we
have to distinguish two cases: @ = 3¢; and a < 3¢.. O
Case 1. @ = 3a;. The first step in the L.R.A. for t-llg,\pqir

a, & — 18 p -
a={a—a)l +a \
since N\
20; £ a — a; M\'\f

by hypothesis. The next step will lead to
~NY;
@ — a, = a]_(ql — ].)“txghlgr

and from this point the L. R.A. for hethvpairs a, a1 and ¢, a — &
will be identieal. . Thus in Casg, " the LRA for a, u is
shorter than Wﬁvfggﬁuﬂmmlg in

Case 2. a < 3a.. This «¢ade must be subdivided into two
subeases: 2,, when a < ﬂgal, and 2, when o = 34a..

Subcase 2,, Here xm\ha,ve g1 = 2, &1 = 1. In fact

a \2&1 + (& — 2ai) = 2a, + a-

and N\ W
,C\ 200 — 2a1) < ay,
this meq}l}hty being equivalent to 2a < 5g;, which was
assu On the other hand, the first step in the L.R.A.
app{i}a to a, a — a, will lead o
~\\ g = 2@ —a) — (60— 20) =2(a —a) —a
since

2a9 = 26 — 4y < a0 — ay,

which is true by virtue of the supposed inequality ¢ < 3.
Now if it happens that a; = 0, both algorithms consist of one
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step. If, however, a, > 0, then, since @ — ¢, = a, + ay, the
next steps in the two algorithms will be, respectively,

iy = daffa -+ £20l3) 158 ‘l" e = ag(q-,- + 1) -+ €203,

and from this point on both algorithms will he identical.

Thus, in Cuase 2, the L.R.A. for the pairs a, a1 and g, a — al

are of the same length. R,
Subcase 2. Now ¢1 = 3 and ¢, = —1. Infact '~.

NN
L

= 3a; — (34, — @) = 3a, — a2,
and N\
2@a, — ) = 6a1 — 20 = @y,

A\
which amounts to 2a = 5¢4, as was sug’p%sed. On the other
hand,

S

a— ay = 2a; — a, a—2a1—a1-ag,

hence the first step in tls\gm&.a{mbpgle}/pggg fy & — @115
a = 2(2ﬂ1 - ag) - (m - Grg).

The continuation Qﬂ"ﬂﬁs ajgorithm will consist of exactly as
many steps as a}q\fequired in the L.R.A. for the pair ¢,
a1 — ¢y, since(2e, ~ @ = a1 + (@: — ag). On the other
hand, ‘fho eontlnuatlon of the I.R.A. for the pair a, &; requires
as mauy,g(eps as the LR.A. for a1, .. Now a1 < L, and
conseqifently, by hypothesis, the L.R.A. for a,, 4, is not longer
thap(bhat for ai, @1.— @, Finally we have that thé LR.A.
fof %, ¢ is not longer than that for a, & — a..

JThus, assuming the lemma to be true for all ¢ < L, in all
) eases it remains true for ¢ = L and, according to What has
been said previously, the lemma is universally valid. This
method of reasoning by induction is often resorted to in the
number theory where even the propositions themselves are
hot seldom discovered by observation or induction.
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4. Kronecker's Theorem. Now that the lemma is proved,
the proof of Kronecker’s theorem ecan be achieved in a few
words. It can be stated as follows: Let @ and a( be two posi-
tive integers and a; < 4; then the least remainder algorithm
is not longer than any other Euclid’s algorithm applicd 1o the
pair a, a,. 2\

Proor. The theorcm is evident if a; divides a.  The small
est o not divisible by any number less than it is ¢ = 3\abd
then we must take a; = 2. In this ease there arc umly two

~

Euclid’s algorithms, < ..;:

3=2-1+1 3=2- 2—1\
2=1-240 2=1- 2+0

both being L.R.A. and of equal length\ "When a = 4 we
must take @ = 3. Then there are }xactly three Iuelid’s
algorithms, QO

No/

4 =3 Wt\a}dbra%ljflﬁ:y%lgu? 4 =3-2 -2
=1-3+0 3=&1+1 3=2-2-1
2=31-240 2=1-2+0

of which the first is thQL R.A. and shorter than the two others.
When a = 5, we qu\ay associate a; = 2, 3, 4 and have the

following Euclidis algorithms:
5=2-2440F=2-3-1
2=1-240 2=1-24+0
AC _
5:‘3\\1”’+2 5=3-1+2 5=3-2-1
322°1+1 3=2-2—-1 3=1-340
FE1-24+0 2=1-2+0
5=4-14+1 5=4-2-3 5=4-2~-3 5=4-2~-3
4=1-44+0 4=3-14+1 4=3-2-2 4=3-2-2
3=1-834+0 3=2-1T+1 3=2-2—-1
2=124+0 2=1-240.
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In all these cases, when besides the I.R.A. there are others,
these others are longer than the L.R.A.  Thus the theorem is
true for ¢ = 2, 3, 4, 5. The theorem will then be proved by
induetion if, assuming it to be true for all cases when a < L,
we shall succeed in extending the proof to ¢ = L.

Let the result of the division of a by ¢, with the least remain- {
der be \
o = aig1 + ey, 209 = 4y, ) "‘m\
and let O

a = ag) + €lay ] P

e the beginning of any Fuclid’s algorithm. If gh - da, then
the continuation of this algorithm will require at\l‘sa\mt as many
steps as the L.R.A. applied to a,, o2, sincé\my < L and the
theorem is supposed to be true for all pairg-gfsfiumbers in which
the greater number is < L. Thus in thi%“case the theorem is
true for the pair ¢ = I, a1 < L. IfpQw'the contrary, aj > s,
then necessarily A\

(]1 =0t e, \'\FWW ﬂzﬁﬁﬂhbl arS{ 01g fn
In this case the contmus,twn of the algorithm, by hypothpsw,
will require not less Oper&tlons than the L.R.A. applied to the
numbers a;, @1 — (Ig,«\BU.t by the preceding lemma, this
L.R.A. is not shotter than the one applied to @, @;. Thus
the theorem is trugﬁbr a = L,a; < Linall eases. The LR.A.
may be of thersdme length as some other Buclid’s algorithm,

X

not proccet%ng by least remainders, as the following example
ghows! ¢
.§~’ 33=13-3~-6 33=13-2+47

<

R\ 13=6-2+1 13=7-2-—1
O 6=1-6+0 7=1-740.
\ ) Exercises and Problems

1. Show that ihe L.H.A. applied to a pair a, b where b < g requires les.
divisions than
' e+ 8

where p is the number of digits in &,
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Indication of Proof: Let by, bs, bs, . . ., ba be the remainders, taken
positively, in the L.LR.A. applied to o, b. Then
b= 2b bg, by = 20, + ba, ey byws = 20,0 + bn,
ba_: & 2be
and 3
0.82(1 + /2" < b, A

2. If b is the smaller of two relatively prime numbers a, &, theé%he
number of Euclid’s algorithms for this pair is independent of geand *<b.
Indicalion of Progf: Denoting the number of Euclid’s aigprithms fo
the pair a, b by o{g,b) and setting N S
a=bg+r, 0<r <a, ‘..‘.\\’
show firet that v

wla,0) = b, 4+ (b o\ »

then reason by induction, '\ v
5. Indeterminate Equations .,o'fw'{:he First Degree. By
admitting neg&ti\& r(ai%\lfli%gax}(}?&gj%isors, and remainders, any

Euelid’s algonthm may be put'in the form
8= bg + 1

b =g
\\ Ty = Tofs + 73
\ " Tn2 = Tu_19n + Fay

where r, Qﬁi’des r._1 and may differ from the greatest common

divisg)\(o?’a and b only in sign. From the first equation we get
“n ri=a — bq; = GQl - bPl

~Dwe set

N\

P]_:ql, Q1=1.

By substituting this expression for r; into the second equation
and solving for r,, we have

r2 = (Prgs + 1)b — Qugee = —(aQs — bF5),
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where, for ahbreviation, we sct
Py = gP, + 1, Q2 = g:Q1.
The same procedure applied to the third equation yields
ry = (13Q2 + Q1)a — (gsPr + P)b = a@ds — bF5,

where

Py = qsPy + Py, Q: = ¢:0: + Q. )
7N\ ¥
[t is clear now that in general we can set ~ D

re = (—1)¥Halh — bPy).
Writing down 75—, and 741 in a similar way aid ﬁakmg use
of the expression \
Tl = Fho1 — Freey x’\\"
we see that Pry, Qe depend on P;Lk Q} P._i, Qr_1 in the
following manner: 9
Pry, = Q'k+lpk’ +’Pr= 1
Qg iﬁ%« ulilgary org.in
and such relations will hold for k=12 ... ,n~11if, for
the sake of uniformity, “\e\set
N 1, Qo = 0.

This means that the. two sequenees of integers

.‘\) Pu,Pl,Pz,...,Pﬂ
»\’\” QO: Ql: QQI LT Q‘n

are deteQnde in a recurrent manner starting with
‘::v Pn = ]., Qﬂ l 0
~\,\, P1=Q‘1, Q=1

Xnd determining sach pair through two preeedmg ones by
means of the reeurrence relations

Pk—]—l = Qk+1Pk + Py
e = Gert@r + Qi1
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The last remainder 7, in the ordinary Fuelid's slgorithm
coincides with the g.e.d., taken positively, of ¢ and & and for
other Euclid’s algorithras will be either d or —d, =0 that in
all cascs we may set

Ta = ed,
where ¢ = +1 is a known unit. Now \
w = (__1)“.4({1'(25 - bpﬂ); f:\“\'
N\

consequently, putting

\
2%

2= e(~1)"'Q g = (1P
we have o\

axr 4+ by = d.

In other words, integers z and y can a,Iw:»iys be found 20 as to
make the linear form az + by equal tu\thp g.e.d, of s coefli-
cients @, b. This important conclunlon can be generalizged:

If there are several Integers ¢, b%¢,*. . . , k with g.e.d. <, theu
integers , ¥,y dbfa%‘tktlﬁfbfc‘)‘fstiﬁd 0 that
ax+by+éz~+- c -kt = d.

The proof of the last\\ratemvnt will be developed for three
integers a, b, ¢, a d\lt'can cadily be extended to any numnber.
letebe the g.c.,d. of g and b, then d = {e,¢), and two intogers
tand z can be’ ftnfnd so that

\"' ef + oz =d
On th\o‘éher hand, with two properly cheosen integers u, v,
»:,\ au + by = e,

p \“.b(,h(*(* getbing @ = ut, y = 4,
ar 4+ by -+ ez = d.
6. Continuation. An equation of the first degree with two
unknowns
ar + by = ¢,
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when nothing limits the choice of , ¥4, s an indeterminate
cquation in the sense that to ¥ we can attribute an arbitrary
value and then find a corresponding z, provided a # 0.
The problem in such generality is a trivial one, But on
scetiing the additional requirement that the wvalues of the,
unknowns should be integers, we have the simplest exampla
of an extensive class of problems requiring the solutign of
indeterminate equations of varlous types (or 1nd(‘temnnatc
systems of equations), the study of which c*ons’mtutes an
important part of the theory of numbers. Indetermlnatc
equations, to be solved in infegers, are often (-a].hgd * Diophan-~
tine equations” in honor of Dicphantus, @ @réck mathema-
tician who lived probably in the tlnr%century AD. and
left a work on arithmetic in which he de Wwith the solution of
indeterminate equations in rational rm ers and sometimes in
integers.

In dealing with an mdetermmate equation
W I b aulibrary org.in

a-q:jvT: by = ¢
to be solved in integﬁfs, we assume explicitly that e, b, ¢
are given integers and a, & arc not both equal to 0. The
complete solutiof\ eonsists of two parts: first, to Inguire
under what cofitions the solution in integers is possible;
and, secondy %0’ give a method which allows us to exhibit all
such solutjons,

Now@bis clear that the necessary condition for the existence
of ir}éé\}al solutions is that the g.c.d. of @ and b should divide ¢,
and*this necessary condition is, at the same time, sufficient.
~(Ebr let (2,b) = 4 and

0 = deo, b = dgj, c = dvy;

then, since d is the g.c.d. of @ and b, by Sec. 5 two integers
£, n can be found so that

af+ by =d
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Clearly «© = &, y = vy will satisfy the propuaed equation. -
Suppose now that one pair of integers, say zy, ., satisfying
the proposed equation, is found so that

axy -+ bys = ¢,
and let N\
ar + by =c¢

N
4

. . .  &NA
for some other pair of integers z, . Then, by suljtzaction,
3 N/

L ¥

alz — z0) + by —yo) =0, N

or . ,'{:..
Yo — zg) = b - )"’:’}\
d i3 4 Y Ya :
Since \\”
R
;—(x — x&)“‘.‘

is divisibie by b/d and a/d i sy ml‘a‘m ely prime to the divisor,

r -~ xp mllqmmﬁmblwww&$ Hbnee
Nt ~ x Et
\\ °=an
where £ i3 an lnt(}m\ and at the same time

\)

D vow= gt
It fol\ws ‘that any solution z, ¥ can he presented thus:
.n\
i.\wz' T = ¥+ &t, Y=y — a,t

N/

\/ with { an integer. Counversely, for an arbitrary integer ¢,
integers x, ¥ satis{y the proposed equation.
Our problem now is completely solved, and the process
deseribed in Sec. 5 provides an excellent pracfical method for
finding one particular solution. It is hardly necessary to
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mention that the least remainder algorithin, as the shortest, is
preferable to others, though it may introduce negative integers.
If it is desirable to deal with positive remainders, only then
should the ordinary BEuelid's algorithi be used.

Ezample 1. Solve the equation $1x + 221y = 1,053. Making use of
the ordinery Euclid's algorithm, we find:

M =221-0+91 A
221 = 91 -2 + 39 O
91 = 392 + 13 A\
S
39 =13 - 3. e NI

Hence 13 is the g.e.d. of 91 and 221, and since 13 divides T,«bﬁS (with the
gquotient 81), the equation can be zolved in integars” The process
deseribed in Sec. 5 can be arranged in practice as fQQQ)‘- 52
=2 @ =2\
Py Py=0 P2=1’ N Py =2
Qo @, =1 Qz =2 Q=5

Consequently £ = = *%%Wfabilg’ui‘m}aﬂ@lorg in
915 +f291n =13

([
(=3

I

and .
= -n-—,,&ﬂ' yo= —81-2 = —162

satisfy the proposed eqh{ on.  All the solutions of this equation will he
given by

=05 +17, oy = —162 — T
\ </

for any arbitrarwinteger & To get more convenient formulas we divide
405 by 17, finding the quotient 23 and remainder 14, and set ¢ = r — 23;
then the,\\pt'cssmns for x, i become

\ w=14 £ 17, y=—~1—7Tr
p u“>re there any solutions In pesilive integers?  To answer this ques-
\tl@ll we must see whether it is possible to choose r s0 as to have
14 4+ 17 > 0, —~1 —=Tr>0
or
> -3 or + =0
and
T < —% or = —1
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Hince these reguirements eanncet be satisfied, there is no =0lution of the
equation

Gle 4 221y = 1,053
in positive infegers. '

Example 2. BSolve the cquation 158z + 57y = 20,000 in positive
integers, Ve
{n this example we shall make use of the least remainder olgorithma® N
158 = 57 3 — 13 KoY
57 = —13- ~4 43 {Q\ -
—13=5--3+2 A7
5=2-2+1. A0
Since 158 and 57 are relatively prime, the cquation 1,2 so\lT'lr\ in intogers.
By the proeess of See. 5 we find
g = —4 g = —3 q}\}:?
Po=1 P, =3 Py=-11__P¥=3 P,
Q=0 Q=1 = =43\ J = 13 (). = 2%
and W

158 - —22 -+, "?‘61 = 1
Henee one pair Wﬂrﬂﬂ?@&uléwsﬂ%\g 1%0 proposed equation b3

\m 20,000 = 1,220,000,

and all the others WIH\}SQ ﬁ)und from the formulas

I

i

£430,000 + 57¢,  y = 1,220,000 — 138t
or, setting r X ”7\7)19 + 7,
“\~ = —17 + 5%, y = 398 — 158,

‘.l

T beu{g’\}n arbitrary integer, Tositive solutions are obtained i

oN r> 1 or 21
"\qﬁn(tf
\/ o<l 3t or T
Henee there are only two positive solutions
z =40, y =240
z = 97, y 82

correspordling to v = 1 and r = 2, -

78

2.

N

f
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7. Nennegative Solutions of Linear Indeterminate Equa-
tions. The problem of finding nonnegative solutions of an
equation

ar + by =
in which a, B, ¢ arc positive integers, can be attacked in a, O\
different way. On dividing z and y, respectively, by b and g, |
we have \\
=bi+r, y=ar-+s Y
where £ 9, r, s ave nonnegative integers, and r < b,a< e and
the substitution of these expressions yields \.‘,,:\""

ab(g 4+ n) 4 ar +bs = c. \g

AY;
By division we can represent ¢ as \s\
¢ = aby + R, R < ab,

whenee, together with the prc‘oedmg; equatlon it, follows
ar + bs an&mm dry-opkin
Thiz shows that ar + bs = R“m divisible by ab, bul
{a)v}— bs < 2ab

consequently \ud
N\ ar + bs — B < 2ab,

and on the oig}i(?ffliélnd
'\“ ar - bs — R > —ab,

N
and so thedinteger
R\ ar 4+ bs — B

™ ——————

i"\ N ab
\1} > —1and < 2. It can ouly be 0 or 1; that is,
ar +bs = R or ar + bs = R + ab,
and correspondingly
t+np=qg o EFa=g-L
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Now, if @ and b are relatively prime, as we can legitimately
suppose, of the two equations

or +bs =R and ar + bs = R + b,

one and only one admits of a solution in nonnegative integers
r < band 8 < a To prove this let us denote by .. 3, some
particular solution of the first equation. 'Then all the golu
Jons of this equation will be given by \)

\/

r = yy; — bi, s = s -+ at, A\
N

and among them there is one and only one in whidld® Zr<bh
The corresponding value of s is necessarily les{bHan « because
bs £ B < ab. Moreover s> —aqa, since\)
N
bs =2 —ar > -ab\

Now if 1t happens that s = 0, then‘ i:he equation

WW W dbrauhﬁi f‘? éﬁ. g:["n E
has a solution of the requzred Kind and the solution i~ unigue.
But then it is impossibles to satisfy the other equation in the
same manner. For T, :i\b s will gatisfy thisz equation, and all
other solutions of 1t\ml°i be given by

yr4-b — b, s + at,

and the only™ %’ay to make the first numher nonnegative and
less thaqki}tu take ¢ = 1, but then the second number will be
> . Y{I~ on the contrary, s < 0, then numbers r and s + ¢,
both\nonnegative and less than b and @, respeetively, will
saﬂ‘;fy the sccond equation.
“\"hus there are only two cases to consider: {1) when the
equatmn gr + bs = K is solvable in nonnegative integers
r < b, s < a; (2) when it is not solvable in this manner.

In the first case, equation

kb=

YA\
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has exactly ¢ -+ 1 solutions in nonnegative integers

5-__011,2!“'1q

1=¢q¢—1,¢—-2,...,0
and correspondingly there are ¢ + 1 solutions of the equation
ar + by = ¢ in nonnegative integers. In the second case, O

Etn=9¢-1 Oy
A\
has exactly ¢ solutions in nonnegative integers D
N
£=0,1,2, ...,0—~1 7
=q—qu*2:q431 “o- - JO“‘\

to which correspond again g solutions of the Qmposed equation
in nonnegative integers. ’
The result of this diseussion can be s \nmarlzed as follows:
The equation \:
ax -+ b,

ATAT anhbrary org.in
in which a, b, ¢ are positive, irt‘oegers the first two relatively

prime, has ¢ + 1 or ¢ solutions according as the equation

hag solutiong in n\megatlve integers » < b, 8 < ¢ or not.
Herc ¢ and R “ds‘note, respectively, the quotient and the
remainder in/thie’ division of ¢ by ab.
Examk ’Let us solve the equation
- 158z 4 5Ty = 20,000

honnegatlve integers by the method of this section. We have g = 2,
&E = 1,088 Al the solutions of the equation

158+ + 57s = 1,088
are given by

r = --43,786 + 574, 5 = 121,268 — 1584,



62 ELEMENTARY NUMBER THREORY
Clorresponding to { = 768 we have r = 40, 8 = —76; sonarpently we
have the second case and the equation

158 + 57s = 1,988 + 0,006

is satisfiad in the desited menner by r = 40, 8 = 158 — 76 == 82, Cor-
respondingly

2 =57t +40, y = 158 + 82 Q
and . A\ ¢
AN
t=10,1 A\ N
y =1,0. \/

That is, there are two solutions in nonnegative integers a8

z =40, y =240 o
z =97, y = 82 v
as we found before. \~
8. Equations in Several Unknowns. ‘ami Systems of Equa-

tions, The solution in integers of Mpear indeterminsire equa-

tions with several unknowns as well assystems of such vinations

can always be reduced to tha$olution of & number of equa-

tons with twe adbREHR ap&\@lﬁlout going into the acueral

theory, we shall show hosy b do this in the case of one or two

equations with three utiknowns,

Lot us consid{}rt-h\({:néquatitm
AN art+ by ez =g
where a, b, g,(¢are given jutegers. Instead of y and « let us
in.t-roducex&ﬁle‘ther pair of vumbers £, u, 0 that
\\ y = ot + Bu
2 = vt + bu,

“{IEJ'P @, 8, v, & are {our arbitrary jutegers chosen so that
.’"‘gzr? 8y = 1. It is obvious that to integral values of ¢ and

u will correspond integral values of y and 2z, But also to

integral valucs of ¥ and 2z will correspond integral values of

¢ and u, since

fi

by — f3z
U= —yYy + az.
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When we substitute for y, z their expressions in £, », the equa-
tion takes the form

ax -+ {(ba + ov)t + (B3 + cdu = ¢,

and the solution of this equation in integers x, £, « is entirely
equivalent to the solution of the original equation in integers,

x, ¥, 2. But by proper choice of &, 8, v, 5, the transformg*d N
equation can be made to contain two unknowns only, ¢ (We

may suppese, of course, that b and ¢ are not equal to f}\s{mul-
tanecously, If so we may choose g and & s0 as to,szatjsfy the
&

condition N
b3 4 ¢ = D. v
NY;
To this end, if (b,e) = d, it suffices to tak\é:\
e P ol

= - ‘,3 A
Then e, ¥ should be f()quLéuhbrary org.in
boN ey

or ¢\

NS ab e = d,

which equation (€;5otvable in integers o, 7.
With e, ﬂ\:p, § determined as specified, the transformed
equatio \~

&\ ar + dt =

in’vqlves only two unknowns, x and ¢ If it Is solvable, all
“584ts solutions in integers will be given by the set of formulas

&
z=r++f
t =&+ gr,

where r, s, f, ¢ are known integers, while » is an arbitrary
integer. Finally z, y, # will be given by formulas of the type

i

N
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= xo + Au + Bv, ¥ = Yo + Cu + Dn,
2=z + Eu + v
involving {wo arbitrary integers u, v

Example. To solve In integers

O\
Rz — By + 162 =1 .
. AN
we note & = —B, ¢ = 16, d = 2, - Correspondingly \\\
IB - —8, 5 = _3 ‘:‘. N/
QO
and «, v satisfy the equation £
- N
—6a + 16y = 2. AS
We can take @« = —3, ¢ = —1, so that .\\.}
y = —3t — 8u, \& 3.
The general zolution of the transformed 'a.qnatlon
dx +‘21~= 1
is www dbr aullQréty org.in
=1 +29;§” t= —1 — 3o,

whence
z =142y, {‘y\=3+99-—8u ¢=1+430 — 3«

with two arbitrary 11?1‘6&(31‘& H, .

if it is requmd to solve two simultaneous equations
A\

N ar+by ez =ce
\Y frt+gy +he =k

the s p}ocedure 15 obvious. We solve the first cquation,
thammg for z, y, z expressions involving linearly two arbi-
”\trary integers w, ». On substituting these mpreqqons to
\ “the second equation, we get an indeterminate equation in two
unknowns %, v.

Exzample. Solve in integers the system

B — 6y +loz =1
2z 4+ 5y — Oz = 2.
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The first is satisfied in the most general way by
=1+ 2w, ¥ =3+ % — 8u, z =1+ 3v — 3u
On substitn tiﬁg these expressions inte the second, we get

3ty — 22 = =9,
whence
p = —1 - 22w, n = —1 4 3lw. 2 AN
Tinally T
z = —1 -+ ddup, y = 2 — 30w, 2 =1 — 27Tu\

with an arbitrary integer w.

Exercises and Problems

1. SBolve in positive integers 101z + 758y = Q0,0DO
Ans. 2= 170, y = 110and = = 923, y = 9.
2. Find the smallest po%lt.we integer a fOl'\&'}lICh the equation 1001z
+ 77(]y 1,000,000 + « is possible and qhow that it has then 100 soln-
tionms in positive integers,
3. Find a multiple of ¥ whicl, when ‘ivided by 2, 3, 4, 5, and b, has
for rematnders 1, 2, 3, 4, andwxwr tive Ans. 119 -+ 4201,
4, Holve in positive integersﬁ\]ﬁ%ﬁ ‘1?6696%1“
Ans, Twelve solutions, one of whmh is x = 283, y = 361.
B. Solve in positive intééem the system

\\7’:& + 3y + 192 = 2,530
8z 4- By 4+ 33z = 3,753,

Ans. Fp@r’solutians, one of which Is z = 162, y = 41, 2 = b7,

6. Solve,in positive integers Tz + By + 152 + 12¢ = 149,

Ans. Fifty{sc%en solutions, one of whichisz =2,y = 8,2z = 4, ¢ = 5.

7. Aman received a check for 2 certain amount of money, but on
gas}ung\lt the cashier mistook the number of dollars for the number of
(,t'nts'a.nd conversely. Not noticing this, the man then spent 68 cts. and

2\ dlsw\remd to his smeazement that he had twice as much money as the
Jheek was originally drawn for. Determine the smallest amount of
money for whieh the check could have been written. ‘Ans. $10.21.

8. A customer buys an ariicle for 48 ¢ts, He has a $1 bill and 3 pen-
nies, while the shopkeeper has 6 dimes and 7 nickels. How can the
change be arranged? Amns. The change can be arranged in four ways,

9. Suppose the eonditions are the same as in Problem 5 except that
the article costs 49 ets, The change could not be arranged between the
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buyer and the shopkeeper, so they ask a hanger-on in the <tore, who hag
2 dimes, a nickel, and 3 2-¢f. stainps, to help them.  The custonwr and
the shopkeeper agree to take stamps.  How can they arrange the change?

Ans, The change can he arranged in 25 ways,
10. A yardstick divided into inches is again divided tte 70 cqual
parts.  Where are the shortest divisions Jocated? N\

Anz. The left end points of two divisions correspond to 1 and 18 .,
and the right end points of the other two correspond fo 17 aud .w\m\

11, T'wo chureh belis begin ringing at the same time.  The -IIX'L(“; of
one follow regularly at intervals of 1)3 sec., while the intery: a’ ot ween
two strokes of the second are 134 secc. Hm\ many stroles, o 1‘»1 aoeed dlyr-
ing 15 win. if 2 strokes following cach other in an intepv wui of 12 sec. or

less are perceived as one sound? N\ Ao TT2,
12. In how many ways can change for $1 heNhdde with re-lies,
nickels, dimes, and quarters? ANSAns, Tn 28 wavs.
13. Bolve the equation (n + 1)t — n2y =4.4
Ans, One solution: :o =: 1 -2n, 5y = —i - 20,

14. Solve nz 4+ (n + 1)y + (n + 2)7. = n? and show that toore 13
always a solution in positive infegers AT z 3.
16. The number of nonnegative ﬁolu’[.lons of the equation
www.dbraulibr ary Lorg.in

x—|—2yt—f—3’-ﬂ

is the nearest integer to (13\“:}~ /12
i6. Bolve the sa,me{{ﬁbfem for the equation

O\ r 4 2y + 42 = n.
A\ ¥ .3“ . n+2Hn + 5 L
D Ans, Nearcst intogor to (—% + (_——U"-i-;--
17 R\&\ﬂle greatest number ¢ for whieh the equation
R b + Ty =
M\hé}ge'x&ct-ly nine solutions in nonnegative integers. Ans. 338,
\ 3} 18. The total number of soluiions of the equations
42y =mn, Zx 4+ 3y =n-—1, dr +4y=n—12, ey
nz + (r 4 Ly =

in nonnegative integers is #.
19. Let a, b be positive relatively prime integers and N a positive
mteger < ob. Divide N by e and b, and eall the remainders, respectively,
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rand pandsct ¥y = ¥ — r — p; divide again N, by e and &, and eall the
remainders respectively » and pi, and set Ny = N: — r, — o1 and con-
tinue the same provess.  Prove (hat the eguation

ax by = N

ig soluble In nonnegative integers if and ouly if 0 ceeurs In the series of\<\
decreasing integers N, Np, Na, . . ., .

R 3
X ¢
N\

N
W ‘f&l'ﬂulibrary,org\in
8



CHAPTER IV

ON PRIME NUMBERS AN

1. Prime and Composite Numbers. Perhaps one, 8i)the
most significant early advances in the developthy of a
scientific number theory was the distinetion, alregdy made in
the Pythagorean school, between prime il composite
numbers. Numbers like 2, 3, 5, 7, 11, .\ arc divisible
only by the number one and themselves, ®bile other numbers
like 4, 6, 8, 9, ... posscss divisors“’}ther thaie the two

mentioned. A number p, distinct-.fiéxﬁ 1, is a prim number
or simply pr\zﬁ{e ,_@'i}l)#%u}ﬁ%ﬁ;aw. Qgglmr divisors th.ar}_ ¢ and P-
A number m, Which has diviselst > 1 and < m is a romposile
number. The characteristioProperty of a composite number,
therefore, consists in the{possibility of representing it as 2
product of two factorjsi:“,\
4 \‘~"
p N N\ m = ¢b
each of which, iggreater than 1, while such a representation
is impossiblefer a prime.
N\
. ‘.§~~~: Exercises
1. 8how that for = > 1, #' 4 4 is a composite number.
25\Bhow that 2%7? 4 1 is a composite number if # = 1.

“\37 A number of the form 2* — 1 cannot be prime if a is a composite
“Wlmber. HixT: The proof depends on the identity

g — 1 = (&~ 1){am1 4 gn2 - - - x4 1),

2. A Test of Primality. We may show that every number
which is not a unit i¢ divisible by a prime. For, of all the
68
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Jdivisors of a given number o > 1, let us select the smallest p
which is still greater than 1. Now p must be a prime; other-
wise p has a divisor ¢ > 1 and < p, and ¢ would be a divisor of
@, which is > 1 and < p contrary to the assumption that p,
ol =1l the divisors > 1 of @, wag the smallest.

Fivery composite number o is divisible by a prime £ v/das
For s, being a composite number, can be represented in .E.hq

form 2N

¢ = be, \
whered > 1,6 > 1. Wecan buppn‘scb = cand thenb = V.
Now it b > 1 has a prime divisor p £ b = '\/»d,\ at the same

time p will be a prime divisor of 4. Thj% femark gives the
first practical test to aseertain whether{a given number is
price or not. It suflices to divide thla\pumber by primes not
execeding its square root, and if ondJdivision succeeds without
a rernainder, then the proposed, gumber is eomposme other-
wizn it will be prime. LW{&%@&Q&%{ e: 787. Primes
not cxeeeding /787 are R :’:
2, 3, 57, 11, 13, 17, 19, 23,
and on trial we ﬁnq “that none of them divides 787. Hence
787 is a prime mm{‘bpr
simplesg™est of primality is quite workable and con-
venient w heu Phe numbers ta be tested are not large; but with
the ,nerea@ng size of the numbers, fhe trials beeome {oco
TLLHTLGE m‘and hurdensome.  To obviate thiz inconvenience
otharsiore  expeditions, methods have been devised to
agedrtain whether a number is prime or not. An account of
sbmv af these methods will be given later. At this time we
\ Jran add only that with all the refinernents and improvements
these methods become inadequate when testing numbers
exvecding, say, 100,000,000,000. '
3. The Sieve of Eratosthenes. JIratosthenes, who lived
between 276 and 194 u.¢. and was reputed to be one of the most




70 ELEMENTARY NUMBER THEORY

erudite men of antiquity, devised a simple method ol so to
speak, sifting primes out of a series of integers not cxirnding
beyond any prescribed limit.  Suppose we want Lo ~opvegate
all primes frem among the numbers 2,3, . . . , N and ~ippose
we know already all primes not excoedmg VN, hin we
begin by striking out the smallest prime 2 and sl of s
multiples; next we strike out 3 and all of its multiplesg *1{1(1

continue in the same way until all primes not exeec dnip \/Tf
and their multiples are stricken out of the sevies 2, 3,3 «. . | N,

The remaining numbers will all be primes > \/)_ vid not
exceeding N. To prove this it suffices to o:m}t ve that only
guch numbers can remain which are nofNdivisible Ly any
prime not greater than their square ¢ N}o‘ca Conscguently
the remaining numbers will all be prm’}es

Now, having found all primes % \/N and £ N and com-

bining them with the primes ‘_l}(ﬂ, we get a table of all
primes < N. F&" egﬂgﬁlnhl,f N ave all primes less rhan
100 it suffices to find by aéfual test primes not exeeeding 10,
which are 2, 3, 5, 7. Having found all primes less than 100,
we can continue the{ﬁa}ﬁe of primes up to 10,000 and =0 on.
With some modifieations and refinements and with the Lelp
of mechanical devices, the Eratosthemes sieve was wsed lor
compilatior of. Targe tubles of primes. 7The most extensive and
the best ofisuch tables is the one published by D. N. Lehmeor.?
Anothef Jmportant publication of the same author? gives the
sma}\l'c:\s't- prime divisors of all integers up to 10,000,000.
N\®Y Exercises

/N

\\ )1 By moans of Eratogthenes’ sieve compile & llst of primes nat excerd-
ing 200.

1. N. Leaumeg, List of Prime Numbers from 1| to 10,006,721, Car-
negie Institute, Washington, Pub. 165 (1914),

t . N. LenMEx, Factor Table for the First Ten Millions, Carnegie
Institule, Washington, Pub, 105 (1909},
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2. Which of the numhers 1,567, 1,829, 5,671 are primes and which are
not?

4. Uunique Factorization Theorem. FEvery number, if not
prime, can be factorized into the product of primes. For if we
let ¥ be a composite number, then it has a prime divisor p
o O\
(Sec. 2) and we can set

N =pN, N,<AN. R \J)
The statement iz proved if N; is a prime number. (’):c;}fm}"ivi.‘se
Ny has a prime divisor p; and AN 4

o'{.'
Ni=piNy, N < Nu 8OO

If &, i another eomposite number, it is di\gi&ible by a prime g,
and R ¢
Ns = p.Ny, Ng ‘<‘}2-

Continuing in the same manner, wémust come to an equation

-E\T)':i"l.ﬂ‘F \;LJ.:-’ ﬂ'élwriﬂb’l'ﬂl‘y.org‘jn
in which N, is a prime z‘;b;, since the series of decreasing
integers PAN
N\K”.N':1>N2>Na> T

cannot ecoutinue ndefinitely, On climinating Naoy, Nuos,
. .., Niweyreaeh the desired representation of N:
»\x,\ N =pp: " P

a8 4 p@ﬁ‘ét of primes. Of course the primes in this represen-
tation heed not be different. ¥or example,
AL

&\l 20 =2-110=2-2-556=2-2-5-1L
Tt is extremely remarkable and important that the factoriza-
tion info a product of primes is unique. This depends on the
following property of prime numbers which, on account of its
usefulness, we shall state ag a theorem.
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TuroreEM. A prime dividing the product o several
integers divides at least one of them.

Proor. If pis a prime pumber and ¢ an arbiiniry integer,
then either p divides @ or p and ¢ are relatively prinie mmbers.
For the g.c.d. of P and ¢, as divisor of the prime g, Is cithep
p, in which case a is divisible by p, or 1, in which eree a and'n
are relatively prime numbers. Now lf‘t the pm:hur db)be
divisible by a prime . Then if @ is not divisible by £ and
p are relatively prime; hence (Chap. 2, Sec. 'l‘\i[’c:;rom 3)
b 15 divisible by p. If the product uf three i,,uizm abe s
divigible by a prime p and if & is not dl\fl?lh}’t‘\b\ o, then be
must be divisible by p, by the preoedmg prom amd for the
same reason one af least of the numberny’ Ix ¢ must be divisible
by p. In the same manner the theohm can be proved for
four, five, and in general any numb@rof factors.

Tuxorem ofF UNQUE Fxc'ro»nummw An integer other
than the unit mtqg((fblcﬁﬂlﬂ}%,’&ag,tngod into the produet of
primes in one way only; that 15, if for the same integer there
are two representatlons A

N = Pl‘lﬂﬁ =G1fe " " s
where pi, ps, -Q\, Py @1, Gz . . -, . are primes, then
s = rand qi, gapns . ., . are, save for order, the same primes

a8 Iy, P, : Z‘Q'\ ; Dre
PRDOF".\':WB can assume that s < r. The product

\" ' Pipa - - - Pr

bemg divisible by a prime ¢,, one of its factors, say g, will
mbe divisible by ¢;. But because p, is a prime, we must have
P = ¢1. Canceling the equal factors 71 and g on both sides,

Pr o Pe=qac o g
and for thoe same reason as before we may assume p: = Gz
Canceling cqual factors on both sides again, we shall have

Ps = " Pr=g3 " " " G



ON PRIME NUMBERS 73

and wo can continue in the same way untit all the factors on the
right side are canceled. Now, if » > 5, we shall reach an
impossible equation

Pog1 P =L

Consequently r = s, but then it follows that with proper{

notation A+

oA\
ot = 4y Dz = gy Ve o = 4y, NS ¢
and this proves the unigueness theorem. ~\ bt
In the unigue factorization of N O ?
i (€
N=pp o pa N

into the product of prime factors, some plimes may oceur

repeatedly, Suppose that among the Qlﬁieb Pry Py« + 5 Da

there are

a primes equal tu P
8 pr}mes &(jual to ¢
www . dbi-aulib
A pnrﬁes equal 10 ltary org.in
Then

~N =puf - - P
is represented ag i\broduct of powers of different primes, and
such represent&tlon will be unique. Thus primes appear as
fundamentdhluilding stones out of w hich every integer can be
built up bymultiplication in a unigue manner.
fiterion of Divisibility. The theorem of unique
factdrization leads immedistely to an important criterion
'mﬁe’reby it is possible to say by inspection, without performing
the setual division, whether one integer is divisible by another
‘or not.  Suppose that a is divisible by b, so that

= be
where ¢ is an integer, and let

b = plmp,zne [ p‘m
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be the factorization of b into the product of powers ol different

primes, Since some of the primes pi, ps, . . . - i, may alo
oecur in the factorization of e, it iy elear, by vivtue of the
unique factorization theorem, that py, py, . . . . p. will oceur

in the factorization of @ and in the powers, respeet iy ely, not lesdON
than ai, a@s, . . ., an. Thus for the divisibility of @ by &
it iz necessary that all prime factors of b enter nio i« in glowers
not less than those in which they enter into & (Bwt this
neeessary condition is also sufficient for the (.li\'-“lfi‘]'_f:ﬁity of a

by b, Far, if it is fulfilled, we may set R4S
a = phpd - - - A, i
~NY;
where A is an Integer and 8, = ay, 6{;:\ @2, . . . . B = 0
Now O

a = bplﬂ:-a1p2ﬁ:—a: :‘ paﬁ‘;—u,A
and ¢ ¥
. . wﬁ\fdﬁ’fgﬁalm*ﬁ%?%fg-fn - phomd
is an Integer. "

To apply this criterioh Mo an example, suppose 1w want to
know whether 40,320)%s divisible by 84 withoui actually
performing the divigion. Since

84 £2°-3.7, 40320 =27-32-5-7,
by mere iriﬁfp'é}ttion we conclude that 40,320 is divisible by 84,
the qwcki‘:i}snt- being

O 25-3-5 = 480,

\‘ﬁ Divisors of Numbers. When an integer is factored into
\prime factors, if is easy to find all its divisors. Let
. il = plﬂlpz.az EEEE psﬁs

be the factorization of . From the eriterion of the preceding

section 1t follows that every divisor d of 4 is of the form

= PuFpe™ ™
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where 0 £ S8, 02 =0, ..., 020, =8 and

viee versa, every number of this form is a divisor of a. Thus

we have all the divisors of & and each only onee if we let the

exponents o (+ = 1, 2, . . ., & run independently through

0,142 ...,8 A
F or exa,mple all the divisors oi 360 = 2% - 3% Bare ethblts-d

in the table @ >y

1 2 2t 2 '
3 2-3 223 223 AN\

32 2-3: 2t - 3 25 3

5 2-5 225 2

$-5 235 235 9N3-5

3%-5 2-32-5 223°5\“32
Arranged in an iucreasing order of ma@mtude thebe divisors
are 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 1518,'202430364045
60, 72, 90, 120, 180, dﬁO-—-—aItog(,thir 24 divisors.

Very simple rules serve to fadthe g.c.d. and the Leam. of
several numbers lactorlzmtg)rﬁﬁlﬁ%ﬂf‘afcmng&n Let py, po,
., Ps be all the distinet prime factors of the numbers

a, b, ..., ms0 That a@hmttmg ZEro exponents, we can set
\Q ’L- plabpoﬂr P ps
= pifipf - - - p e
.’\“}" .............
,\: ) o= pipe® o Pt
The greatest common divisor of a, b, ¢, . . ., m will be given
by th stoduct
&8 phof - - - pb
»\é@xe}e fi, fy . . ., f.are the greatest numbers consistent with
Nthe conditions
flédl, f}éisl, P ey fréﬂ-t
Jo S as,  fs £ B N -
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Hence, in general, f; (fori =1, 2, . . ., 5) must be taken as
the smallest of the exponents @, £:; ..., g {n the
contrary, if gifor< = 1,2, . . ., sis taken as the greatest of
the exponents e, 8;, . . . , u;, then the number

:pgllpng . e pg» R
will be a common multiple of @, b, . . ., m and o ;{'li"{he
common multiples of these numbers the smallest. '\

7. The Number and Sum of Divisors. A funciidn defined
for positive integral values of the argument mely be calted a
“numerical function” in a general sense,The number of
divisors and the sum of divisors are t.he\simplesl.. nserieal
functions of interest in the number theéfy.” We shall denote
by v(n} the number of divisors and by"aﬁn) the sum of divisors
of a positive infeger =. Clear]y:f(l) =1, ofl} = 1. To
find r(n) and ¢(n) for n > 1, wesuppose known the fa.ioriza-
tion of » into pri\{fn\.\?\-.f.%tlgarlﬁ:gb;éi‘y,org,jn
| n = pips - - py
All the divisors of 7, add each only once, are represented iy the

£q.)
terms of the expaﬂsk:d product

Q4+p:+ - ‘+ ,’le)(_l +rpa4 )

N\

PN I+p.+ - + 0>
Consqugin:ﬁjr e(n) is cqual to this product. But
.\ atl _
..s\ 1 + p _I_ - + pd’ — I)____ 1..;,
N p
~ \f(;ﬁ' p > 1; thus we can present o(n) as
Vo =Pl gt o1 et o
P—1 P — 1 ps — 1
The number of terms of the above product is +(n). If we
notice that for pr = p: = -+ + = p, = 1 each term of this

product reduces to 1, it is elear that

1) = (e 4+ Vias + 1) - - - {a + 1).
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Let us take for example n = 360 = 23-32- 5; then

+(360) = (3 + 1)(2 + 1)(1 + 1) = 24,
o300y = 220 F oL o,

numerical functions r(n) and ¢(n} are particular cases of &)

general elass of funetions defined as follows.  Let fin) be an&
numerieal funetion and F(n) another numerieal flmcfslon
defined hy \\

F(n) = Ef(d) O
N
where the summation extends over all th& thwsorz-, d of n.
Then F(n) {or f(rn) = 1 and f(n) = n coideides, respectively,
with v(n) and ¢{n). We say that f(n)N='% factorable numerical
Junction if for any two relatively prime integers n, »’

wwrwidbe raulibray- "y.org.in

Jlnn') =Fmf(n’).

We shall prove now that I(‘(vz) will be factorable if such is the
cage for fin). Dcnot;{g by d and d’ divisors of n and »’,
respectively, we have,
FP@d= 3 13 1@ = SHafa),
P\ é @ d.d’
the last 'I“Bfflation extending over all combinations of
divisors #f, d’. Since d and d', as divisors of two relatively

prlme\mﬁeQ i&nd #', are relatn ely prime, we have
Fl)fid’) = f(dd’}

because Jin) is a factorable function by hypothesis. Hence

F)F(n') = 3, j(dd).

4.4

N
8. Numerical Functions Depending on Divisors. The . |
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The produet dd’ is a divisor of nn’/, which ix ohy g, Con-
versely, every divisor D of na’ ean be represented s 4 produect
of some divisor of n by some divisor of 2/, To prsive this, let
(Dyn) =d and n = vd, D = dd’. Then win' i« ivisible hy
dd’; that is, »n’ is divisible by d’. But » and «’ rnlat-ively\
prime numbers; consequently d’ is a divisor of %" Thas, «if
we let d and d’ run through all divisors of n and 11" prespee-
tively, the product dd’ will run through all the divishra’of an’,

7

and it is important to show that each of thesgal divksors will

oceur only once.  Suppose that W

o= adi N
where d, dy are divisors of n and A5 47 are divizors of ',
Since 4’ and d, are relatively primeNdvis divisible by .  Also

dy 1s divisible by d, since d} and 4 ate relatively pririe,  Con-

sequently dy = d and ¢} = d'y and this proves the meeortion.
Since dd’, fowall- SomMEEISIY &f"d and ¢, reproscats all

divisors D of nn’ and eagh dnly once, it is clear that ~he sum

"s\
L 3} [
¢.&\J fidd")
O
is the same as, the sum
>\ ¥;
Ko 24(D) = Fiun')
'y >

:"\s¢
ext-umﬁi over all the divisors D of nn'. Hence, for any two
A . i
g@{aﬁwe]y prime Integers n, ',

’u\\ " -

O Flan') = F(n)F(n"),

that is, F(n) is a factorable riumerical funetion,
By repeated application of this property, we conclude that
for a set of integers @, b, ¢, . . . , k, relatively prime in pairs,

Flabe « - - k) = F{a)F(b) « - - F(k)
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and, in particular,

F(n} = F(pryF(pr) - - - Flps™)
it
o plnq?zag P pxm

iz a prime factorization of n. Thus to evaluate F(n} in gencral Oy
we need only to evaluate this function in case its argument i3 ’
power of & prime p*. But since divisors of p= are 1,,php ,

., p= by the definition of F(p<), we have ¢

F{pe) = f() + flp) + 7" + - +f(p“3

Applying these general considerations to the, Q{u‘tmul‘n‘ cases
fi{n) = 1 and f{n} = n, of course we get thxaamu CXpPTossions
far 7{n} and ¢(n) as hefore. PAY;

9. Euler’s Recurrence Formula. As an example of a more
recandite arithmetical truth we shatb Siention here the famous
reeurrence formula for the“gpwd%{" {xgbors, discovered and

proved by Buler by means of ana'iytmai contideRafons.

L. Euler (1707-1783) was (m%s of the greatest mathematicians of the
eighteenth gentury. Hing rk ’covering muost varied fields of pure and
applied mathemaiics, lof\ profound impression on the suhsequent
developinent of matheindtical science. When mest of his great con-
temporaries such af\Dahiel Bernoulli, Clairaut, and I¥ Alembert devoied
their cfforts to t&w wadvancement of applied mathematics, Euler apent
considerable fime/in cultivating the theory of numbers with signal
BUCCCHES, i

O

Nuntbers of the form

~O 2 — &
N 3
for k= +1, +2, +3, . .. go by the name of generalized
pentagonal numbers. Arranged in increasing order of
magnitude they are

1,2, 5, 7,12, 15, 22, 26, 35, 40,
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Now consider the sum

o{n) —on — 1) —e(n — 2) + o(n — 5) + a{n — 7}
—a(n —12) —o{n — 15) + - . «

in which the signs of the terms follow an obviows Liw and tha
arguments are 7 and this number diminished hy consceutive
pentagonal numbers as long as the resulting 1nnmibhers are
positive. Fuler discovered a remarkable fact ;'1jjuf1't this
sum: 1t is 0 when % is not a pentagonal numiyeg and it is

7

(—1)*'nif n is a pentagonal number N\

3k kN
T T2 oW

Without distinguishing these t-wo"eé,'Ses, the same can be
stated as \J/

o) — o0~ 1) ol Ryl m 5) + ol — 7
2’ wgég— al(nj'.}fQ])ﬁg— oln—15) + -~ - =0

if the scries is oxtended aslong as the arguments do not become
negative and the meatiihgless symbol ¢(0), when it wnpears, is
replaced by n. L\

This celebratgd:formula ean be conveniently used in forming
a table of the'®ims of divisors without factorization of the
numbers infe primes.

Though Hiscovered by analytical means, Euler’s recurrence
formula™éan be proved in various ways by very elementary
mephods.  The exposition of these must be deferred to other
%kia}iters of this book.

V10. Perfect Numbers., The problem of perfect numbers,
a favorite with ancient Greeks, owes its origin to the number
mysticism of the Pythagoreans. The number 6 has divisors
1, 2,3, 6. Excluding, as ancients always did, the number
itself from the sct of divisors, it is easy to observe that 6 = 1
+ 2+ 8. Again, the divisors of 28 with the exclusion of the

N\
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numberitself are 1,2, 4,7, 14and 28 = 1 + 2 -4 - 7 + 14,
"Thus 6 and 28 both possess the property of being equal to
the sum of their aliquot parts, and on this account were con-
sidered as ““perfect numbers.”

In the infancy of science the speculation on such perfect . £\
numbery enjoyed a certain amount of pepularity, which is |
evidenced by the fact that in Euclid a rule is given for obtains)
ing even perfeet numbers. Tuclid’s rule amounts tost}he
statement that N

211—-1(21) — 1) '\\“ 3
is a perfeet number if 27 — 1 is a prime. Ta verify it is an
easy matter. In fact the divisors of ]“uchd’s\;umber exelud-

ing the number itself, are \s
1, 2, 22, .‘ , 20—t
2r -1, 22 1), 222" — 1),}. Ce e 2022 — 1)
and their sum is Www»dbrauhblary org.in
1+24-22+ C 2 A TN - (1L + 2
RSP oot nem -
.\\ \/ = Dr—i(2r — ).

It is not difficult ‘to show that all even perfect numbers are
necessarily of), Bachid’s type. This problem amounts to
finding for v;,‘hgl:t even 7 the following equation holds:

5"\.“
AN\ e{n) = 2n.
Sincmi’a}s suppesed to be even, we can set

N
N\ n = 27"m, p>i

\here m is odd. Then, since

o{n) = (2» — V)o(m),
the eondition of the problem is

(27 — Lyelm) = 27m.
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Now 27and 27 — 1 are relatively prime numbers;  cusequently

m = (2r — 1)r
a(m) = 2vp,
where r is a certain integer,  Numbers r oaud w are twon,
distinet divisors of m, and their cum N o
o\
7k (20 — Dr = 20p A\
makes up already what should be the sum of all nljz.;}p;fr’s of m.
Consequently m has only two divisors; that ’ihj:-ﬁ,-: is prime,
which is possible only when » = 1 and 2¢ — Lispriine.  Thus
an even perfect number must be of the fordh ¥
27120 — 1),

Numbers of the form 2# — 1 are g:&lﬁzd Mersenne's numbers
hecause of a statement made concekning them in the prefaee to
his “Cogitata physico-matheiafica,” publishe! in 1644,
Mersenne implied. thankahibsdlyoralites of p, not greuior than
257, for which 2 — 1 i3 ptime are

2,8, 5,7, 1347, 19, 31, 67, 127, and 257
Whether this st-t-e:é}eilt followed s detailed analyxix of the
problem or is miere'or less a conjecture is not known. Subse-
quent analysisyNneluding the work of present-day iavestiga-
tors, has yie[gi\e’il the following results:

For the{;v\alues

N,3,5,7,13, 17, 19, 31, 61, 89, 107, and 127
2751 is certainly a prime number. For all other primes not
~exceeding 257, Mersenne’s numbers are composife except
perhaps for some of the following six valies:
157, 167, 193, 199, 227, 229,
for which the character of 27 — 1 is as yet unknown.!

I The authors are indebted for these results to Professor D. H. Lehmer,
whose contributions to this subject are well! known.
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Exercises and Problems

1. Find the smallest numbers with 10, 18, 24 divisors, respectively.
Ans. 48, 180, and 360.

2. Show that ¢(N) = 4N when N = 30,240,

3. Two numbers are said to be “amicable” {or “{riendly ) if cach ,
equals the sum of the aliquot parts of the other.  Hence, if M and & are
amicable, we have £ :\
o(M) = o(N) = M + N. X ;"

Show that the number pairs 284, 220; and 17,296, 18,416 a~w a.ml-?able

4. A chain of numbers s said to be “sacizble’” i each &&e mum of the
aliquot parts of the preceding number, the last being eonsidered as pre-
ceding the first number of the chain, Show that the\following numbers
form a sociable chain: AN

14,288 15472 14,536 14}(74 12,496

8. The only numbers which are no; ﬁumb of consecutwe integers are
powers of 2.

6. Prove (hat the sura of recaﬂ‘f@"ﬁ&d@ﬁ&ﬂkﬁnﬁmmnga mwerfect nuin-
ber is equal to 2, a

7. Show that the pumbg™uf dnf 1sors of an integer is odd if and only
if this integer is & square,. \

8. Prove that theg Kd.uct of all divisors of n is nitt,

8, In how many guys can an integer be factored into relatively
prime factors? Ans If » iz the number of distinet pnmc faclors of the
integer, then the\nmnbbr of the required faetorizations iz 2*~%

10. Find tlkc pxpression for the sum of the vth powers of the divisors
of an ultegqn
11, w that an integer N can be represented sy a difference of
two_ :;q res if it is elther odd ov divisible by 4, otherwise not. The
rcpreS'(‘ntutmn ig unigque If and only if ¥ is a prime number.
"12 Find al]l the positive integers & which make x(z 4 180) a square.
) Ans. © = 12, 16, 80, 144, 320, 588, 1,036.
13. Represent in all possible ways 1,547 and 1,768 as a difference of
WO SQuATeS.
Ans. (@) 1,547 = T7A* — 7752 = 1142 — 1072 = B6% ~ 532 = 5de
—387s.
(b) 1,768 = 4437 — 4412 = 2237 — 2182 = 47 - 312 =432 — g2,
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zf(dya - I:E'r(d)]z

a/n din

14. Prove that

where the summations extend over divisors of n, Hint: Balk membersA
are factorable numerical functions.

15. How would one find out whether a given fraction a/b, in \,n)aJlesf
terms, can be aplit into two unit fractions; that is, whothor the gmmtmn

% \ "4

1 N

14
b oz T2

can be solved in positive integers z,, 32 Indicatipad\df Svlution: Tet m
be a divisor of & without square factors (that is S nondivisiie by
gguare except 1), Beck, if possible, such fach’izations of b

\N\/
a M

8 = =

g.

WWW. dbrauhbbar;y* org.in
that 5 £ 8 and § + & is dl\’].‘.i'.].le 155, a. If 54§ = ac, then

-7-'1 =-\m,c§ . X = CH.

16. 8plit 48455 an ,45 into as few unit fractions as possible.
17. Dewse 4 meth 01‘ solving the Diophantine squaiion

',’\‘, .c*+px“+qr*+m+s=

in integer, &;:,\y The coeflivienis p, ¢, », § arc given integers. Indica-
tion of S{ﬂu&ion: The proposed equation ean be presented thus

\
PA\) S _12+)(x2+,1 R S IV
’\“ p 29’ Pty GPe o2 — P

whenee, with both signs +,

: z |

1 11 A 1 pﬂ) !

2 b g = T2 g g = M2 z — =] —3=
a* + opr + 5 & _y\‘&l(z s — 7t ’
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unicss the right-hand side equals 0. Consequently

rr_ 2 _ N Y, 7Y
(-5 )+ie-%) -

whereby the number of possible values of z is limited.
i8. Bolve in integers

8

o+ Lor +2g -l 8
I —pr g — | =
ivc 21‘3‘ 2@ =

(@) #* + 2+ a2+ a3+ 1=y, ,"".\'
(b x* + 22° + 8 + 8 = 7, QO
(€ zlz + 1)@ +2)z +38) +1 =y ~

T
 { )

Ana {a) 2= —1,0, 3; (b) no solution; (¢} all integers s{e{s‘olutions.

i1. Number of Primes Infinite. It is quitenatural to ask
the question: Is the series of primes infinite like the series of
integers themselves? That this questi {f@n be answered in
the affirmative was known to the @xcient Greeks. In fact
Euclid, in his “Elements,” gives a\rémarkably simple proof
of the following proposition. \s?\:f:;'-}.dbraulibrary,org,jn

Teworey., To any given set'of primes a prime not belong-
ing o the set can be added® We express this by saying that
the series of primes is infihite.

Froor. Letp be,‘@ijg\gmatest prime of the set, then primes

.\\ 2,35 ...,p

taken in th(;i.f\'ﬁsjgural order comprise the given set of primes,
With Euclidwe form the number
\\\ P=2-3:5 --p+1
If.fhis number js prime, it is not contained in the set, since it is
sgreater than p. If P is composite, it bas a prime divisor =
N Avhich is different from 2,3, 5, . . . , p. For if = were iden-
tical with one of these primes, both P and 2-3-5 - - - p as
well as their differcnce 1 would be divisible by it, which is
impossible. Thus a prime can always be produced which does
not belong to any given sct of primes.
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The same can be expressed in a different way.  tet
=2 P2 = 3, ps = 3, pr= 0

be primes in their natural order so that p, dencies the nth
prime. From Euclid’s proof it follows that hetwern p, and
PpaPs - - ¢ Pa -+ 1 inclusive there Is at least one primeNH

there are several the smallest will e g, 5o (had O\
N\
Pupt S papaiz - - - pa 1 \ \/
Of course this inequality can be slightly ]lll‘[nn‘\l @b by con-
sidering .%’\
Pgrz - Pa — L ’

instead of Euelid’s number P, only ﬁm; wo nul Suppose
# > 1. Thus, with a sligh{ modlﬁca\lon of Fuehd's reasoning,
we have a slightly betfer r(“uult

f > 1. ng"d’lbrauﬁ}ﬁ?é‘ry orgim — |
or

It was very difficult” to iraprove on the above resuli.  The
first. notable suecess\m this direction was achieved by the great
Russian mathematician Tshebysheff (1821--1894; who in
1851 was able\to prove the following result: between @ and
%0 — 2 fopyaity @ > 74 there is always at least one prime.
From t’Elﬁ’\i’t foliows immediately that for n = 1

\’\‘ Y < 2}'),;
T[\augh Tshebysheff’s proof is rather elementary it is long and
quull‘{‘h some preparations, and for these reasons we do not
) give it here. Instead we shall give a very simple proof of
the inequality
Pret < PPz * " Pa
for n = 4, due to Bonge. This inequality is not ncarly 0.

sharp a8 p.,1 < 2p. but it maintaing a certain interest on
account of the simplicity of the proof.
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12. Bonse’s Inequality. The primes p,, ps, . . .

, P are

separated into two groups: one compriging primes p, Pg, - . -
i1 and the other primes gy, iy, . . ., Ps.  The choice of
¢ so far iz limited only by the reguirement that ¢ > 1 and
i < n.  Consider 2 system of p; numbers \

pps -+ pial — 1 KN
Pip2 - P2 — 1 _ % N/
PPz - P — N 4)
............. \\
PP - ¢ piaps — L D

None of these numbers is divisible by > Pz - . ., Bl

and at most one can be divisible by a ien prime out of the
series Pi, Pit1, - - . , P FoOU auppose: that two numbers of

A
ppz t o peal — w»g)gérauhbl E?T‘:y gl‘glnl

are divisible by the same pri,me P Where £ £ & £ n. Then
their difference ~

pm; < peall = D)
- ig divisible by pa, \\‘hﬁ'h is impossible, sinee all the factors py,

Pay, o - ., Picp, {1 [ arc less than p; £ p.. Suppose now
that 7 is chuae{l.m that
Ve \d n—1i+4+1<p

Itis 'a\jrs possible to satisfy this condition; for instanec, by
taking ¢ =n — 1. Then the number of primes p;, pip,
5% . P, which 18 » — 2+ 1, i3 less than the number of
“infegers in (4). Since two numbers of this system cannot be
divisible by the same prime p.(i £ @ £ n), there must be in
(A) at least one number nondivisible by any of the primes
Piy Pir1, - - -, Po and nsturally also by any of the primes
™, P2, - - - 5 Pioy.  Let this number be

N=mpp2 -+ pid — L.
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Now every prime divisor of N, being different from py, pg,
., Pn, Must be Z pusg; moreover, L= py, andd eonsequently

Poet SN Eppe - - - i — L

Hence

Prapr < 1Dz 7 0 DiPr 2\
provided

n—i+1<p Oy
N\
Let 7 be the smallest number satisfying the above wquality.

Then “'("’5

n—i—1)+1z p.,_ "\.'\"
or AS

o=t & Pie1 —

\

a/}\g

. On the other hand,

P — 232
if ¢ 25 In fagfif &hi&dnﬁﬂa@h&l}gw true for =onu value of
i, it “will be true after replsg"ng 2 by ¢4+ 1 For p. 2 pin
+2p—2z2pa 2 2+1 >4 -4 1. Butforz = 5 fbe ine-
quality is verified, and\so it holds for all ¢ = 3.

Now if »n = 10 ~‘bl§ smallest value of ¢ for which n —1
+ 1 < porn TV'{“ — 1 must be 2z 5 because if it were = 4
then n would\be < ps +3 =7 + 3 = 10. Thus, if = 2 10
we have npxé@e/é;s’arily

\.., n—1izz1

th,ga«rmg the produets
Pipe  t PG Diant P

,\'"\;“’we see that the second consists of at leagt as many factors as
the first, and besides

Dip1 > Py Pize 2 Py « v - P > P
Consequently

Pipa P < Pisiftiar T 7 7 Da
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and
(prpe = - - p)* <Pz " P
Since, on the other hand,
Pupr < P2~ " - P
we shall have
Pl < PPz " Pa

for n = 10. But this inequality is true already for n _2, {1 ?
can be verlﬁed direcily.

13. A Property of 30. Fxamining the gmall 11umbcrs~n = 2
3, 4,5 ... onediscovers that in the followmg Qases

n =2, 3,4,6,8, 12, 18, 24, 30

the numbers less than n and relatively ps}me to n are unity
and primes, After 30, no matter heﬁ\ far we go, no more
numbers with this property oeccut, anit one may suspect that
30 is the greatest number pomxﬁgﬁhﬁbpm?{gtg phat num-
bers less than and relativelyy prime to it are etther one or
primes. This guess can bes proved by using the inequality
established in the prccedmg ‘section.

Letn > 4beca num.b‘&r possessing the requisite property and

let p. be the greatﬂe\st pnme not exceeding /7, so that

\/ pi = n <pin

Then n must Be dn isible by p1, p1, . - - , Px and consequently
by t'helr\ph)du(,t For suppose that » is not divisible by p.
(« —.%32, . k), then n is prime to p. and fo p.?; that is,
thc,rﬁ s a comp051te number p.? less than = and rplatnely
pnmo to it. Since n s divisible by py, P2, - . . , D, We have

)
\} ’plpz"'?)kéﬂ-
On the other hand
1< Pix
and so .
Piy > PPz PR
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But this is impossible for & 2 4; consequen''y b £ 3 and
n < pi = 49. Since there are no suonbers of 1he reguisite
property between 30 and 48, 30 must he the proatest of them,

14, Remarks on the Distribution of Primes. Jven casual
examination of tables of primes reveals thao peiines are dis-
tributed in the series of integars in the most bresular mannets,
As far as we can go, over ahd over wgnin we ftel ronse (uriv
primes with the smallest difference 20 Wheoor ﬂmw are
infinitely many of these so-cvalied “twin priney’ \ lmbod‘y
knows; this iz one of the most diffieuit mm».t'.\\{l«.pmhlems
concerning primes.  On the other hand, cof@riive primes
often have large differencos, That paidS )0l consecutive
primes with arbitrarily large differencesNmisd cecur can be
shown very simply. For consider fHe” n — | consceutive
integers :'\

NN

nl 42, nl4- 3, AN nl--
oo dbraulibrarys pig

They are all composite, q{gd it follows that there are two
consecutive primes differing by more than any given number.
On account of the great irregularity in the di~tribution of
primes, it is ha,rdly ]sossﬁ)le to cxpect that the uumber of
primes not exceeding a given limit can be exactly represented
by any simpleMprmula. However, a remarkable expression
exists thh\ gives the approximate number of primes not
eﬁceedmg\a given limit . Denote the number of primes
sz ]Qf’;r(x) fhen approximately

3

" :’. * i
AN w(x) = L Tog } = Li{z)}.

s

The integral on the right-hand side is a function of compara-
tively simple nature, the so-called ‘“integral logarithm,”
and it is amazing that it can approximately represent such an
irregular function as r(z). The following table gives some ides
a5 to how close w(z) is represented by the integral logatithm:
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| .

x® j n(x) ’ Li(z) i Diserepaney

500,000 41,539 41,606 67
1,000,000 78,499 78,628 129
1,500,000 114,156 114,263 107
2,000, (00 | 148,934 | 149,055 121
2,500,000 | 183,078 | 183,245 172
3,000,000 216 817 | 216,072 154 N[
4,000,000 283,147 |  983.352 | 205, W
5,600,600 348,514 | 348,638 129
6,000,000 412,850 | 413,077 ‘oo °
7,000,000 | 476,649 | 476,827 K78
2,600, 000 539,778 | 540,000 v 299
9,600,000 602,400 | 602,676 > 186
10,000, 000 664,580 | 664, 913/,"\ 338

Thut the integral logarithm re};re;;ents approximatcly
the number of primes not excealfinglbrgiyesrdimit is not
merely a fact of observation bugdias been proved theorctically,
thongh by very intricate anafy’r.ical investigation. ILet us set

.\ i

logt+R()

T(Sﬂ)

A\

The best result hitherto proved concerning the error R{z) is
that the ratio @fo(x) to

¢ \ hk'\/log::}og}og::
'S M e

where'k'i\\sﬁ certain numerical constant, remaing bounded as =
tPnd,s* 40 infinity, which implies that R{z} for large z becomes
1n==1gn1ﬁcant in comparison to Li(x) and in this sense Li(x)
\s an appreximation to w(zx), If it is true, which appears very
probable but remains as yet unproved, t-hat a certain transeen-
dental funection introduced by Riemann has only real roots,
then it can be shown that the ratio of B{x) to 4/« log x remains
bounded or, speaking roughty, R(x) for large x is comparable to
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+/z. On the other hand RB(z), as far as the order of nagritude
is concerned, cannot be very much smaller than ~/r. 1In
fact it has been proved that with & certain constant K there
are values of z as large as we please, such that

N\
Ve ‘
R(z) > K log x R\,
and also O
vz N
Rz} < Klog . I

How important it is to have everything prdwed rigoroisly in
investigations of this nature and not to reljroh observations, no
matter how extensive they are, is showh by the following iict.
In the whole extent of existing tablés'et primes the ineguality

Ww w.’&% u'frb{‘:&{‘?i’) org.in
hag been verified constantly.;:t'fiat is, many millions of times.
Yet it is not true in gemesal. It has been proved that for
infinitely many x as la{ge as we please we may have either

D .
(W w(z) < Li(x)
or \ )

K2 x{z} > Li{z).
Values ofgxifbr which the last inequality holds are, however,
far bey6iuY the lirits of the existing tables,
Of“mecessity we must confine ourselves in regard to the
fabcmatmg problem of the distribution of primes to mere
osstatements of facts. Their proofs belong to the analytical
‘theory of numbers, a very vast and very difficult branch of
our science in which properties of numbers are investigated
by methods involving franscendental notions such as con-
tinuity, ete.
15. Primes in Arithmetic Progressions. Since primes,
except 2, are odd numbers, the fact that the series of primes
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is infinite is cquivalent to the sbtatement that the arithmetic
progression 2z + 1, of odd numbers, contains infinitely many
primes. Looking at the matter from this point of view, it is
quite natura! to inquire whether an arithmetie progression
ax -+ b, whose first term b and difference @ are relatively
prime numbers, containg infinifely many primes or not.
Yor instance, all odd numbers fall into two progressions:

one containing numbers of the form 4z - 1, \ \)
1,59 13,17, ...,
and the other numbers of the form 4z — 1, “\\
8.7,11,15, 19, . . - . SN
A

Also all odd numbers nondivisible by 3 11\1nt0 two progres-
sions: one containing numbers of the form 6x + 1,

L7, 133"‘lg'i‘f’.'dbl‘au]ibrary.org,in
and the other numbers of the; f%)r}_fn 6z — 1,
5, 11 17

Each of these progre&iohq containa prime numbers, but does
each of them contmm finitely many primes?

By extremely.ingenious analytical methods Dirichlet, in
1837, was able %0 prove that every arithmetic progression
whose first i\rm and difference are relatively prime numbers
contalnNn\ﬁmtely many primes. In other words, there are
infinitély* many primes of the form az + & where @ and b are
arbl@rary relatively prime integers. As yet no arithmetical
fﬁpafs of this general proposition have been discovered,

xlthough there are such proofs for some particular progressions.

16. Some Unsolved Problems Concerning Primes. On
the subject of primes it is much easier to set problems than to
solve them. We shall mention some such unsolved problems.

Q"
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1. Are there infinitely many pairs of fwin prime-”

2. Are there infinitely many primes of the forng r - 17

3. Is it true that between any two consecutive squares st
and (n 4+ 1)? there {s always af least one prime?

4. An obscure mathematician of the cighteenth crorary,
Goldbach, stated that every even number > 4 ix w snmgf M
two primes. Is this true in genceral?

Quite recently, in 1937, Vinogradov by analytical 14 hod.%
of extreme subtlety was able to prove that every suitviently
large odd number is & sum of three primes, Of&ours this
will be true for all odd numbers > 7 1if Goldbfu\lﬂa starement
holds in general.

Exercises and Problemy)\ ™
1. Prove that 24 iz the largest nuthr dl\}sﬂ)le by all nuinhbers not

exceeding its square root.

2. Prove that forn 2 & -
WWW. dbr aull.brary org.in

y 2 < 110'38 T Pa.

HiNT: peiq = 26 + 2 for < Z ’1[).

3. Prove that there arenfinitoly many primes of the form 44: - 1.
Hmvr: Take » group of p‘rﬁnes of thxs form 3, 7, 11, . . ., p and con-
sider the number P 4\‘1\[\ 3.7-11 « « - p — 1. Notice that primns of
the form 4x + 1, when multiphed, producc a aumber of the sume forn.

4. Prove that there are infinitely many primes of the form 6r — L

B. Prove that there are infinitely many primes by observing thui in
the meries ¢\

\\ 22 41,28 1,28 41,22 41,

every two numbers are relatively prime.
8. Prove that the factorial 1-2-3.4 - - - » for 2 > 1 cannot be a
msquare or cube or any other power of an integer., Hine: There is always
\ A prime between n/2and n i n = 4

17. Integral Part of a Real Number. On many occasions
it is necessary to consider the greatest integer not exceeding a
given real number z. This integer is denoted by E(z) or by
fz], the last notation being almost universally adopted at the
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pi'esent time. The integer [z, by its very definition, satisfies
the inequalities
o <[a]+1

and may be called ““integral part of 2”7 or “integer contained
in z.” For example

£

. [%] = 2, ['\/E] =1, {"'\/E} = =2 \"~\
The inequalitics serving to define [z] are equivalent, to’ the
representation of x in the form A

+¥2»

v =[] +0 O

where 0 = ¢ < 1 and 8 may be called the “{ractional part of 2.”

A few properties of [2] follow almost imediately from its
definition: \ x\

{2} fzx + m] = [z] + m, if m is anlinteger.

() [z + [—-2] =0 or —1 ,\vaqa’gfﬂiﬁgliﬁaq;)iﬁnaguhinteger or
not. AN

Q.

(© fo + 9] = fu] + [y}, 3
() [Lﬁl] = [%], if:n}"i} a positive integer.
Property (a) may B@\E:Jnsidered as evident, So is property

{b) if z is an integey. To prove it when x is not an integer, we
notice that inthis case

> x = [z] + 8§, 0<h <l

~
conseq@n‘ély
J;.} -z = —[z] =1+ (1 -8}
&na{} <1 — 8 < 1, whence

(—al = ~fa] - 1,
which is the same as (8). To prove (¢) et

x = [z] 4 6, 028<1
y=W+¢ 05 <L



96 ELEMENTARY NUMBER THEOGRY

Then
r+y={+iy+8o+9¢

whenee, by using property (a),

[z +yl =[]+ ly]+ [0 + &L N

Now 0 = 44 ¢ <2, whence (84 &] =0 or 1 accon 111;,3\\
84+¢ <loré+ & = 1, and correspondingly o ~\ 7

e + 9] = [2] + (4] ~\

A D

or K7,

[x + gl = [=] + [y] + L \Q\
To prove (d), let ¢ and r be respectively the guotient ww.d the

remainder in the division of [z] by n, se ‘t;h*at
[£] = ng + 7; Og.a’én— 1.

Then ‘ ’ o

o = s AR

and

R\ D o
" NI q+
But \'\\;
¢y 0= L;L;ig <1,

whence it f Qli(}vés that

O [2)-e-[H)

Othﬁ‘ useful properties of the symbol [z] will be found in the
\»\?X,ermses

From the definition of [z] it follows that the number of
integers m satisfying the inequalities

yP<mzEcsg

is always given correctly by

[z} — {wl.
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Hence, in particular, [z] is the number of positive integers
1ot exceeding x.

{One must not confuse the integral part of £ with the “near-
a3t integer to " The latter is defined as an integer & satis-
fying the inequality

f —a| = 4. \

Unless z is equal to an integer +14, the nearest integerﬁ&'
uniquely determined ; otherwise there are two nearest 1ntcgerq
Tz — L4, 2+ 14, both distant from z by Y5, We Iea.ve it to
the reader to prove that in all cases

2 g.
{x + 31 "’j\
is the nearest integer fo . \

Exercises and Prnbie;pfi 8

% 3

1. Prove that . AN
[2z} — rJIx] = 0ol

ik -
aceprding as the fractional part nf LR 4 auhgl #y-orgin
2. According as the fractional part of ns <eoorzall<a<l),

[£] — [m-’—a]-—lor()
8. Prove that QO
(22} 4\«‘{,‘%}/] 2 (2} I + = + ol

4. Prove that fon a}ositi\re integer n and any real @

) S

A\ 2 no—1
[a:]—!—[\-i—n]-!—liw-i*;jl-{* +|:$+T]=[m]-

B. Phkw that for an integer x
N\ - I::n - 17]
2NN T - — | ==
~O 25 REESI
y 25
6. If P and @ are two positive relatively prime integers, then

P-1
2[@] _®-DE-1
P 2 !

1
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and if (P,Q) = d
P—i

ye] eone-n a-t
P 2 2
1 .
Hinr: Notice that . N
F-1 FP-1 EN
)3 [Q] -3 [991_-_@} O
P x=1 F % \>
7. Show that ""‘5

(1443 +1  and [ + \/31"\“1

_are hoth divisible by 2L Ts this the highest power. o{ 2 divibineg either
of the numbers? Hinr: (1 + ‘\/3)"‘ + {1 — ‘\}(3)”‘ is an inteser and
—1<1-+3<0. S\

8. Bhow that the nearest integer to (3 + ‘\/ S)rforn > 21

exactly by 2* if n is not divisible by 3, &nd’ b 2u+1. if 7 is diviei
9. Two series of numibeyadbr aul Lhr‘ 2 o

Trvigible
i+ hy 3.

fazl, [b2) fors = 1,2, 3,

comprise all integers 1, 2, 3;; . without repetition if & and b ar: posi-
tive irrational numbhers s\‘m\h that,

\\

L1,
a b

10, Prove th.aﬂ:.'/

D7 Sy E]z [E]
& Feofi]-3):

.~\
Haxt: Fxpress the sum
0" %5,

-4

\/extended over all selutions of the inequality dé < % in posiiive integers,
in two ways.
11, Show that
®
d

L R O 2[

]
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Hint: Count in two ways the number of solutions of the inequality
48 = n in positive integers.
12. Show that

Ve .
kN
r0) @+ ey = 251[3J -

Hixt: The number of divisors of m is twice the number of wlutwns qf

the equation ) ...\ o
dd +5) =m (O

in positive integers, sugmented by L in case mis o square:~,f h

18. The Highest Power of 2 Prime Containe.d‘it‘n\é Factorial.
Jet vl =1-2-8 - - - n be a factorial and\\I given prime.
Clearly p does not divide the factorial ifen& p, and we may
say, in this ease, that p enters in nlin the'd power. I p £ n,
then n!is divisihle by p and it is int@sesting to find the highest
power in which p enters in n‘ Let us denote the exponent
of this power by »(n). Among vhe balibaary, ;B8R3N B
only p, 2p, 3p, . . . are leJS}ble by p; moreover, the greatest
number divisible by p and ot exceeding n is nip where

O [n]
.{\} ny =} —i
N\ P
Consequently »() is the exponent of the highest power in
which p entégalin the product

N

.“’fg’\'ﬁp-:%p s mp =pml 2.3 - - - ng
Bui ir&"fé « + + fy, the prime p ocecurs in pgwer with the
expci};}nt- v(n1); hence
) ¥(n) = N1+ #{n).

\ In the same way we find

3-" ?’1-1) = Tz + 1'('”.-2)
w(ng) = Mz + v(ns)
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HEENE
e = | — |1 Ry =|—|r " *
r P

are decreasing positive integers and sy, for some &, 'ocomes

where

< p. Then »(ny) = 0, and eliminating #e_1, Ry-s, . . . fTOW

the system P, ’\t\"
y(mi1) = \3\ ”
P(Np_g) = fp_1 -+ v{hi_1) |\

vin) = ny + viny), \,."‘:\\’
we find \.2f

1"(“) =n 4+ N+ - x:st\.;ﬂ

By property {d}, Sec. 17, \ ‘,\‘

3 =\{W}ibrau}wyﬁ'{,§é%.;n -

and so finally

-Gl

the sum terrmnat\’h} as seon as the first term equal to 0 oeours,
though nothmg, prevents us from continuing it farther if
desirable. N&

Exampl\ie?\ TD find the highest power of 7 dividing 1,000! we determine
{

100 :
SR\ [ﬂ} = 142, [1—’999} - 90, [}90_‘7‘]
AN 7 49 343
\”\ ~/ »(1,000) = 142 + 20 + 2 = 164.

Thus 7184 ig the highest power of 7 dividing 1,000!

19. Some Applications. As an applieation we shall prove
the

TrEOREM. The product of # consecutive integers is divisi-
bleby1-2-3 .. -n
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Proor. We are to prove that

_le+ D +2) (a + n)
1.2.

s an integer if # is an integer. It suffices to suppose that a
ig a positive integer. The statement can be proved in two

Ways. ~"\'
First, & is the well-known expression for the number \of""

combinations of ¢ + n elements taken n at a time; goli€e-

quently it is an integer. | thizs meaning of @ is no’a‘kn}m n,

then we can reason as follows, I we write & as '\\

4

then the exponents of the highest pQX\:é‘}‘\E’, of any prime p,
dividing {a + n}), n!, al, are, ref-:peci;iVel‘y,

_ www hraulibrary.org,jn
a-+n la

______ _~_~._

IR AN
aAreE .
2]z ]+

L fe

£ h‘ ~
all three sumg™leing carried to the same number of terms.

Now by plj@}r’tfy (¢}, Sec. 17,
n a
[p*'] + [?“]’

A [a,-l-n]
& S Sk 3B

4%

’o

..\ -
™ pl—

That is, the prime p enters in the numerator (e -+ n)!in power
not lower than in the denominator n! a! of the fraction repre-
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senting @.  Consequently, the numerator is divi-ivle by the
denominator and  is an integer.
As a second application we shall prove that ihe voetion

335 2n—1)
BH="g2%"" " 2n = O
when reduced to its simplest terms, s of the form \\\“\
. \J

a A

= N

2 ,\\“

- XN\

where ¢ is odd and @ << 2n. In fact \/

_ @) 1 (n+ D S
22npn i nl 22n l—fé_\- e

4 H
and \ O
(n A Iy EPTPEITY.-O(F 1. 1)
1208

is an integer by the jyfeceding theorem. Consequenily the
denominator of H, }1-’1‘1?11 reduced to stmplest terms, is a power
of 2. Ou the otﬁe\}\ﬁand, the exponents of the highest power
of 2 occwrring {y(2n) ! and n! are, respectively,

\El[%ﬁ], and 2[;] i=1,23, ...

anci§\ y

OV emme2S[2]- Sz -3z

N Bus
n i n i3
p [@]%*ﬂg*” ="

i=1,2,3 ...

and so w < 2n.
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Exercises and Problems

1. Let » be represented in the scale with hase fhe prime »; then

fo=bope + bpt™t + - - -+ by
0 =5 <p; i=0,1,2...,8 by > O

and the exponent of the highest power of p dividing n! is

=N

L T i e e o
p~—1 « \

™ :’
2. Find the Highest powers of 2, 3, 11 contained in 1,0001 » \ )
8. With how many zeros does 2531 end? '\ <
)

O

p{n) =

s

4. If a and & are positive ntegers, prove that \\

(2a)' (20! xm,\\)

15 an integer. A/
6. Show that ud

i3 an integer if & and b are positiye mtegerﬁ
6. Show that m<\

¢\J !
- e

7N
L >

n,’../
is an iuteger if a\b\&y) . . . . ! are positive integers with sum equal {0 n.
7. Show 1hatﬁuder thL im,me conditions

i"\& 1
w4 {?a —_ 1)
.‘\\\ H=

Y
’0

is an\mtt,ger if @ b, . , 1 are without common divisor. I af
‘K , LH are mtegers
8. Develop the method for finding 1he smailest value of n for which »!
is Qivistble exactly by a given power p* of a prime p. Apply to the
numerical examples: (e} p = 3, o = 100, and &) p = 5, @ = 43, [adi-
cation of Solution: The requisite » must be divisible by p.  When we set
= px, the problem reduces to solving the cquation

N
4
4
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SOREEEEE

Express o in the scale with p as a hase

w = ep™ - ep™t o - e &\
and seck z in the form ) ‘:}xf

z = bip™ £ hip™t £ - - 4 b.; s \':\’:\ )
i 0 £b <p; i=0,1,2, ... ,m <“§'

§

T L R A +pf(’b’\(’

the first digit
oir = DD

by = _P_____ .\

¢ |:pm+l. - K&

is > 0. Bet NS,
z = bip? Pz}
)} ry.OUg.in
then # is determined THTY %%rggm%mny
N

where o < w. o & )

H \

O w<pr+pt+ +
then by = D a@
>’ - [3@__1)],
i"\" P pm 1
an seffing
Hx &£ = ble—l + :-UEJ

\:: satizfies the cquation
Q xf x:‘
A vl I o et B SECIR IR
o ¥
with @” <. w. The problem is impossible if
wzpm+pm—1+ PR +p_

Answers for Erzamples: (2) Problem imposszible; (8} n = 170.



CHAPTER V

- 3

A GENERAL COMBINATORIAL THEOREM AND (N
ITS APPLICATIONS . O
1. Combinatorial Theerem. BSuppose we have s, mile( tion
of sbjeets which may or may not possess one oz m}sre of the
chevacteristics Ay, 4, . . ., 4, Our probleniNd'to find how
many objects do not possess any of the chiwacteristics 4.,
As, . .., An Let N be the total numbér‘ef objects in the
collection, N(A:) the number of objeels/posscssing a given
churneter 4, N(4;4;) the numbt‘r,of ﬁb_]c,cts possessing two
given characters 4; and A, an:& SOTHibpgy exaritple, let
the objeeta be a collection of teu ‘numbers 1, 2, 3, ., 10,
aril let the three (,ham(ters Al, As, Aq be the rcqp@ctlve
divis 1b1hty by 2, 3, and 5 \ Then evidently

— 16, N(m\x 5 N(4) =3, N(4s) =
_V‘(A 14’12) “;"5 4V(4.11.4.3) = ], N(-A—2A-3) = 05
;\’;“ N{A.4245) = 0.

With these .J{é\dtlm’lﬁ adopted we have the following theorem:

TercEbwy The number of objects not possessing any of
the (ha’rmttrs B R PO A 1
N’“wzm (4 + 2N(A A) — D N(AcdAY + -
Tk

+ (-—1)"N(An‘12 B Au)

where the summation is extended over all combinations of
the subseripts 1, 2, . . . , » in groups of one, two, three, and

so on, and the signs of the terms alternate.
105
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Proor. The number of objects with character A s
N(A1); so, subtracting it from N, we have

N — N(4)

objects left not possessing the character A,. This apries with >
the general formula for n = 1. To find the number of objegts
not possessing any of the characters 4 1y Az we nm_jv{'e ‘that
the number of objects with charucter A 218 N(A,), aydamong
them there are objects with both characters ANond A,
Consequently : \ 0

' N(4;) — N(4:4,) QO

is the number of objects with character, W3 and withont A,
Subtracting this number from the “n\flmber of all objects
witheut character A1, we have left 58

N — N(_fl,J — ngA%) :I-_N,%AlA o)
www . dbraulibrary .org.i
objects not possessing charactérs 4, and 4, in agreemelt with
the gencral formula for n ‘=f:'2.' Again the number of ohjects
possessing character Ag\and not possessing characters 4,
and A, is }

N(ds) = N4 — N(A245) + N(4:A45).
Subtracting thiswfumber from the number of objects devold
of characters\d7 and A, we get
N — NP N(4s) — N(4y) + N(A,A2) + N(4,4,)

+ N(4:4;) — N(4.4.4,)
a,s’t-h:e number of objects devoid of characters A ;, Az As

. Though the first three steps give a clear insight as to the
\%falid.ity of the gencral statement, we can presont a formal
proof by resoriing to induction.

Assume as true that the number of objects devoid of
characters A;, 4,, . . | » Am-1 I8 given by

N = SNA) + INA) — - - -
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where ¢ runs through the numbers 1, 2, . . . , m — 1; where
&, § tun over all ecombinations of them in groups of two; and
s on.  The number of objects with character 4., but devoid
of characters Ay, As, . . ., Am_1, by virtue of our assumption,
i5

N(d) ~ IN(Ad) + DN Add) — - - -,

the extent of summation bheing the same as before. Tbg}
number of objects devoid of characters A4y, A, . . .',’3’(‘1."
will be ¢ '

- N(4y) — EN A9 + 2N{A A + ZN(A,A;) ~-

But clearly x'\\;

N(Aa) + Z}N(a,) »

1

is the swm www H‘b]_a

Z‘N(A

where ¢ now runs through L2 . . ., m. Also

EN.(\‘QE&) + 2 V(i)

w'

ullbral‘y.org,jn

18
N D N(AA)
X:\ N/ £ J‘
. i"\ﬁ.
where <, J.un through all combinations of the numbers i, 2,
- m\q groups of two; and so on. Thus if the cxpression
glven xm the theorem is truc for » = m — 1, it will be true
f }g = m and therefore, being true for » = 1, will be true in
gerleral,
2. Euler’s Function (n). The gencral combinatorial
formula of the preceding section will prove very uvseful in
deriving the expression for the number of positive integers

N

N

¢\
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not exceeding n and relatively prime to n, his number,
denoted by Euler by the sign ¢(n), is an importont, numerical
funetion called “FRuler's e-function.”  Ifrom e definition
it follows that ¢(1) = 1. To find e(n) for n > 1 we suppose

that n is factored into a product of powers of priciey £\

n = plmpzaz [ pam_ ’.\:\. )
An integer will be prime to n if and only if it i« st dhpisible
by any of the primes p,, p,, . . . s B Thereforo g} is the
nuntber of integers in the collection 1, 2, . | . /v which are
not divisible by any of these primes. Now le‘t"\-?'i. Ay, oL
A, stand for divisibility, Tespectively, bw pl, oy Pe
Then ¢(n) is the number of integers 1, 2.%". . | » devoid of
characters A, 4,, . . . y 4 and, a.ss({oh, can by rotermined
by the general formula of Sec. 1, )

To find out how many integers possess one or 1une of the
given _charactermamdhnmlimupf'ﬁlﬁﬁlgl how many integers
1,2, ..., nare divisible pﬁa? number of the foru:

B=pwi - - py
where ¢, 7, ., . LA8 5ome combination of the subreripts
1,2 ..., s 1‘{0@‘”&1] the integers divisible by F are Pt

witht = 1, 2, 3 - ., and among them those which are < n
correspond to.\’“, ~

7 . t=13... .1
O\ P
Thus ,ﬁ(\@h the notation of Sec. 1
R\ Ndd; - ay=__n
£\ Ppic - pr

\”‘ginﬂ consequently
7 7 n
p(n) = n — =4 2:_._ - T
E’P«: Pip; E PP +
i 6 Gik

n
+(—1)i)m
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Thie expression is equivalent to the produet

w(n) = n(‘._ - %)(1 _ %2) (1 _%1_3

Notiee that in ease »n is a power of a prime: n = p9, tho

formuis for ¢(p*) becomes O\
1 O
o(p*) = 10‘*(1 - ~) = p* — p*
P K
and in the guner:ﬂ cage \ &
pin) = p(pre(p:*) * - 90(10{*')

M
which shows that ¢(n) is a factorable nuE{em'al funection.

Example. Letn = 360 = 232 5; ‘theﬂw
@ (3060) = 360 = DUGHEhradh ity org.in

3. Moebius’s Function u(n)y "The first expression for o(n)
can be pub into more condénsed form. Let a denote the
divisors of pipe r ¢ p‘,}\ including 1, which are composed
of an even numbe ({f prime factors; also let & denmote the
divisors of the S‘Lm\mmber composed of an odd number of
prime faciors, T}mn a and b together represent all square-free
divisors (thatQ s divisors not divisible by a square except 1} of
n, and the \O:L mula for ¢(n) can be presented thus

#
S

. \ -
"\ @l{n) = nE - — nE

\the suffixes @ and b indicating that the respective summations
are extended over all divisors ¢ and b.
The same formula can be exhibited in a still more condensed
and elegant way by introducing a new numerical function
#(n), Moebius’s function, with the following definition
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p(l} = 1 o

an) 0 if » is divi<ible by a square > 1.

uln) = +1if = is square-free and contains e cocn nmber
of primes,

p(n) = —11if % is square-free and eontains an add number @\

primes, R
Thug, for example, : \ \)
p(1) =1, 4(2) = —1, 4(3) = —1, u(4) = 0. w5}~ !

u(6) = +1, u(’?) = 1, u(8), &N, m}) = 0.
N
With the help of the Mocbius function, eQuigan be exhibited

thus: O
e\
eln) = nz‘u .(.;\j,"
d/’n

where now the qmnm:clhuwlﬁﬁlmﬂqr&t‘h all divizars of n.
In fact terms correspondmg o divisors which are divisible by
squares > 1 are zeros, “and the other terms corvespond to
square-free divisors previously de noted by a and &; hut by
definition p{a) = ‘-F-l’ and ul(b) =

At first sight, Qﬁoeblua 8 funchon appears only as a pweans to
write the expression for e(n) in an abbreviated and clegant
form. Butdtis much more than that, as the following obser-
vation éi}owe It has been found empirically and verifted
up tk\n = 500,000 that the sum

™

AN .' TSI RN TT0: ) I NTY ) S R S £y
\\ "'i'l.umerically is constantly less than +/a.  If it is true, though
it hag vevor been proved, that
p(D) 4 p@ + - - 4 pin)
Vn

remaing bounded for all #, then it would follow that the roots
of the transcendental funetion mentioned in Sec. 14, Chap. IV,
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are all real; and that would entail 4 tremendous advance in the
study of the distribution of primes. Thus Moebius’s funetion
s intimately linked with the most jmportavt and as yet
unsolved problems of number theory.

Exercizes aud Problems

1. Prove that o AN

olad) = plap(b)— O
(e

if ¢ is the produet of distinet primes common to @ and b, ¢ {?

2. Form a iable of solutions of the equation ¢{z) =4Oy h = 50,

3. Develop a method {or solving the equation e{@hs wr where M is a
given fraction < 1, Consider the numerical cas@»{a) *o= 243 (B) A
=40z, Ans. (@) & = 2°307% (b) = = 3°7P1LY.

4. By considering the Eulerian function; prme that the number of
primes is infinite.  Hixr: If p is the greatestipiime, then there is only one
number less than and prime t0 2 - 3

B. ¥ind the sum of all integers = nj::’!‘l“cfi\gr(ii ?1193 i lfPra"%?rﬁzﬂn)

6. Prove that the number of 1rredu{'1blt, {ractions = ! and with denomi-
nators pot surpassing = is ™

)

& 1 #(d)
7. om) 2 old)
:"\6.
where tjrié\m ‘r‘nmation extends over divisors of =
ji"x’ﬁﬁndamental Property of u{n). Moebius's function, by
) Very definition, is a factorable numerical funciion. This
simple remark will enahle us to establish at once the funda-
mental property of u(n), expressed as follows: The sum

Pln) = 3 ()

d/n
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extended over all divisors of n s 0 if n > L oue P i{n =1,
The second part of the statement is obvious. "I’ prove the
first, we observe (Sec. 8, Chap. IV) that F(n) i= « lactorable
funetion. Hence it remains to prove that

Fpe) =

N
if p is a prime. Now \ \J)
Fpo) = p(1) + u(@) + 20D + - -+ + w(p®) = w5 OH #(p),
gince for @ > 1 terms u(p?, . . ., p.(p") are adf mmll to 0.
But x(1) =1 and wip) = —1, and so ¥ (p Q\v“{! and con-
sequently F(n) = 0 forn > L

\

Exercises and Probleﬁ}"
W\
1. Show that forareal z = 1

X )
“o

W, dz}ﬁlﬁ{a}r rgin

[ =-I
Hinr: Consider the sum,
mi\ Zuld)

extended over all po\amve integers d, & satisfying the inequality d8 & &
2. Show that Ior rz1
2 u(n)

a=1

,\,

»
o\.‘o
W

£1

"N\

\' Use the preceding problem.
~3 Licuville's function A{n) is defined as follows: A(1) = I, Mn} =
“\01‘ —1, according as the number of equal or unequal prime factors Of 7 is

- l
\ / even oy odd, Bhow that 2)\(&) = 0if n is not & square and = 1if » 18
a/n
8 siare.
4. Show that for a real =z = 1

Eun)[ﬂ = v/

n=1
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5. A Property of o(n).—TurEOoREM. If1 4, d',d"”, .. . are
all divisors of n, then
o)+ old) + o)+ - =m
or, with the usual notation, in a more condensed form, ¢
Seld) = n. O\
a/n : ’\ "

FiraT ProoF. This preof is based on the explicit expmssmn
for ¢(n) and on the fact that »(n) is a factorable; funetmn
The function _ .”‘;\\

Fin) = J0(d)
din 'x:\
is factorable and for a prime p \ N
Flp2) = (1) + (@) + -+ - + w(@‘*} =1+ (p—1)

+(p - I)p wav:r dblaﬁli@‘myl&{g“l -
Consequently, if

pla1p2 . . - pl!;
is a factorizafion of n, mto a product of powers of primes,
Fn) = r(plm)mp&i CFp) = e - pe = .

Smcoxn Proor{ HIn this proof we do not need any informa-
tion about @(n)except itg definition. Numbers 1, 2, 3, ,
# can he djs‘tnbuted into classes referring to the same class
numb(\r\’vﬁm :h have the same g.c.d. with n. Evidently the
numbet “of classes will he exactly equal to the number of
dw,,lbigm of n. Numbers belonging to the class with the same
anond. d with n are multiples of d:

dk:  k=1,238, ... ,g
with % relatively prime to n/d. Hence there are exactly
oin/d) numbers belonging to the class characterized by the
divisor d, and in all elasses there will be exactly
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()

d/u

mumbers.  But since all numbers 1, 2, . . ., x e clessified@n
ail classes, we find n numbers; that ix, o G
Ko
~\
2 LAY O
“\d - N
a/n e \ R

7 g.‘
As d runs through the set of all divisors of -n.";h,--'d alzo will run
through the same set; hence

On comparing \.}'l}%z,’ﬂ*ﬁfiatﬂmﬁ@};y-ﬂ?g-iﬂllat- give prefvrenee (0
the second, for it is based¢on more general prineiples and can
be used in cases fo which'whc principles of the first prool cannot

be adapted. g
8. Inversion Fofmitila. The property of e{n) established in

the pre(:eding‘sbc\-tion characterizes this function completely
and may hge.,iLStad to find its value for any given n.  In fact,
taking iy sﬁcizessiou no=123,.. . we have the system of
equaﬁt\n:l}"'

CED =1 e Fe@ =2 o) +eB) =3,
R o) + o(2) + old) = 4, . ..
Ny : :
~\Jfrom which &(2), ¢(3}, {4}, . . . can be determined step by
step. The values of o(n) resulting from the solution of this
system can be written down by means of a general inversion
formula which we shall proceed to explain.

Let f(n) and F(n) be two numerieal functions such that for
n=1223 ...

F(n) = 3, 7(d); (A)

din
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fimy = Ep(dw(g), (B)

din

then conversely

the summations in both cases referring to divisors of n. Te, .
prove this formula it suffices to observe that (4) determinges’
the values £(1), £(2), 7(3), . . . through F(1), F(2), F(3), W. .
without ambiguity, and to prove that the values f@]’)i f(23,
7(3), . .. as given by (B) actually satisfy (/L) ‘Puking d
instead of n in (B), we have AS )

7 = E»(d’)k‘(d,L >

the summation being extended now ow er )l representations of
d in the form >

s

_ C2\%“13&‘\/”_d]al'aulibran'y,m'g_in

with positive integer factorsud; d” On suhstituting into the

St
o\ Ef(d),

din
we have

.\ ) Zf(d) = D ld)HF(d),
N\ dfin
the su ation on the right-hand side being extended over all

repre;-,entatlons of % in the form

AN
Q

w4 n = adf d”
with positive integer factors 5, d’, d’. When we collect
terms with the same 4", the result is
Fd") Epld’),
where the summation is extended over all representations of
n/d'" in the form
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2= st

k1
H

g
i

and the result of the summation, by the fundiniental property i

]
of g{n), i8 0 unless n/d"” = 1, in which eaxe it 2 Fin). [’h"u} fi

with the value f{n) given by (B), we have 'S

D1ty = K, RS

a/n o\ 3

and the inversion formula is proved. .
Applying this formula to the relation .

3

\/
2@00 = n\x?\ _

din
we have anoth(’fwf\’:‘?‘,oc{h%gthl]E’r&@%ﬁ‘%ﬂin
d
E L’R‘> N ”’2 pld)

din
established in Seq<3}

\ \ Ezercises and Problems
1, Prove t}la:t“\
N\ - n nin +1
& el
ﬁ}NT Consider the sum
\~ Beld)
Q/ 7 (;xt:ndcd over al} solutions of the inequality dé £ » in positive Iniegers

2. Let s:{n) denote the sum of the kth powers of integers not cxceeding
% and relatively prirag to n.  Show that

P e il S

vl nk

din

3. By using the inversion formula determine s;(n), $:{n}, ss(n).



A GENERAL COMBINATORIAL THEOREM . 117

Ans. Fore > 1

si{n) = jme(n)
syfnd = fnfeln) +inll — pd{d —pa} - - - (1 —pi)
s(n) = infeln) + A1 — B —pe) - - - {1 — pa)
if O\
o= p1“1pgﬂg PR psﬂ.‘ A
4 I ' A\
. e\
Fom = 35, O
din <’~.’§
then f{n} 1s a factorable function if F{n) is factorable. ¢ "\’,"
: A\
B. Tt G
7y = [[r@ O
dfn AN

4
where the produect is extended over divisors ’of:ga\a,nd fin) = 0 for no

value of #, then conversely (’?;‘?@b';'alﬂihrary.orgin
n) = FLog
Fn) dI/g[{.y: 5
6. Shov- that the product e (n o‘f’i”r:tegers < n and prime 6 # is given

" x’\”\ anyr e

wl _ nav(n-)]:[(&-&)
O d/n
7. hnother Aﬁﬁdé&ﬁon of the Combinatorial Formula. As
a second apphedtion of the geueral formula in BSee. 1, let us
derive :m\*"g\;{pressian for the number of odd integers not
divisiblll by the given odd primes py, Pey - - -, Pu and not
exccedite a given limit 2. First of all we must find how many
Cfdti idtogers below this limit are divisible by a given HU{nber P.
there are evidently as many such integers as there are integers
E for which

2k — 1P £

or
T 1
ké—ﬁ""‘z"
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The number of integers % satisfying this condition is

T 1
[@ + é]’

which is at the same time the nearest integer to z/2F taking,
in case there are two nearest integers, the greater ol them
To denote this nearest integer we shall use the byml,ml

B
2P \%

After these preliminary remarks the rest\bf’our reasnring is
quite similar to the reasoning in Sec, 2 \and the result +an be
presented thus: Let ¢ and b r{\present rcspectn ely, divisors
including 1 of p,ps ¥Wv- %Tadﬂfﬁhﬁﬁn"éga'n even and an odd
number of primes; then the vn,umher of odd integers not
exceeding x and not divisible by any of the primes p1, ps, . .
Pm 18 expressed as followss

-3

L

If p1, P2, N, P are the first m odd primes, we shall
use the sym'\)l é(x, m) to indicate the number of odd integers
2z not\d;mblble by the first m odd primes. Then

= L LAY
} oa,m) E{Qa} > {25}
\ } a b
In particular if m = (/) — 1; that is, if P Py v v o s Pm
are all odd primes not exceeding /7, then all odd intcgers

not divisible by them are primes > 4/% and < z and 1; in
other words, in this case

¢(@,m) = 7(z) — m = w(z) — w(/7) +1,



A GENERAL COMBINATORIAL THEOREM 119

and on somparison with the preceding expression for the same
nutmhar we have the formula

w(:c).= (VE) + 2{5&} - E{%} -1,

[

whicli may be used to compute the number of primes nat\.)y

exeeeding = when all the primes not exceeding 4/ are kHOWﬁ

The use of this formula is facilitated by auxiliary tgaﬁilég of
numbess a and . We give here such a table corres%){i'djng to
. m =B, )

i b
1 15 21 33 3 5 v ou
35 39 55 65 13 1058185 195 -

(i 1 143 1,155 231 273385 420

1365 2,145 3,003 5,005 iy Wladil, 15015,

Example 3. To find the number of p}:im;s not exceeding 100. Pick-
ing from the preceding tables numbers divisible only by 3, 5, 7, we have

)
{@} = 50, 3,@M; {39} = 17,10, 7
@ (O b
50+ 3 h2% =565 1741047 =34

Consoquently o

: A4 (100) =8 + 56 — 34 ~ 25,
Exanple 2{\:'{}0“ find the mumber of primes not exceeding 300. The

greatest pritat”less than 4/300 is 17; hence there are six primes, 3, 5, 7,

11, 13,,,},7, below this limit. Our tables correspond to m = 5. To

avoid the necessity of making larger tables, we may use the almost

E\Yi&énﬁ formula, _

3

plz,m) = ¢lz,m — 1) ~ d»(;:m -~ 1)

In fact, to have ell odd integers = z nondivisible by the n -ﬁ.l:st odd

primes, we have to remove from the odd integers = 2 nondivisible by

the m — 1 firgt primes those which are divisible by pm, and the latter
ceeur in number

N
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(ze-)-LL2) =)

In our case we have
#(300,6) = ¢(300,5) — ¢(17,5).

To compute the first term we may use our tables and find

N
{150 ] . A s
‘1—;— =150,10,7,54,4,3,2,2,2, 1; sun Pl o8N
NS ©
1500 ) A
—E—I = 50, 30, 21, 14, 12,1, 1,1, 1, 1; SUMCHE.
Thus . ...'\"“
- $(300,5) = 190 — 182 = 58\
and, on the other hand, N
#(17,8) = 2, ~
so that \ “\
Finally W W ffgogﬁ blﬂf5§ org.in
w(300) = 55’-{- 6 = 62.
Since the number of primes less&han 100 is 25, there are 62 — 23 = 37

primes between 100 and 300./\And indeed, by direct count, 21 priimes are
found between 100 and ?{Qﬁ\and 16 primes between 200 and 300

8. Meissel's Fokﬁlula. The labor involved in computing
the number of (Primes below a given limit becomes quite
prohibitive Wheh this limit is large, on account of the great
many valu@s“@f a and b to be used. Nevertheless, by another
very ingehious arrangement of caleulation, Meissel succceded
in ov{hzoming these difficulties 10 a certain extent.

»{Lﬂi: P, be the largest prime not cxeeeding \/w s0 that
o \ W

\/ v + 1 = x(~/7).
Then P, > V2 and

x . _
<VEE, N < V.
Prt1 Pty
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Sinee « () is a nondecreasing function,

w(@:) £ a(vVr) =»v+ L
e

N
- . - 2& N\ v
ean only decreage with an inereasing s, and therefore, for & ,._.7’:\\1@

Now

we shisll have N\
— I’N“
-.-r(\/x }gy+s.- O )
Prte \"
® \‘}
When we set m = » -+ g, the largest prime not exceeding Vz
will i Py Tor s £ u g fortion ,x'.:\

K
—— x " —
Dors £ VZ, S BAZ
‘J,W,W-d’brau]ibra OFE.i
and N TY.org.in

a 9
N
N

gr(%l—?—-) = W _:I:.’t:q_ 1 >u+v

st

o\
4 4 j‘:
e N T (B)
) >
The irlequalit§e§:§§) and (B) hold for s = 1,2, . . . , &
Consider,rtb{m? the meaning of the symbol ¢(z,a) where
'S M

A sV satlsdm

By'&‘iﬁue of these incqualities the last prime of the sequence
”\1 ;;3, Pe=5, ..., PeprIS Z vrandp. £ n.  Consequently

(n ,&) represents the number of primes which are greater
than p, and do not exceed n, augmented by 1; that is,

wignse

$(n,a) = w(n} — 6.
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By virtue of the inequalities (4) and (B), these conditions wil
be satisfied if we take

n=-2 and a=s4s—1
Pria
Then A
dorrvo=1)=oG2) -0 von o
e e R
.'\
. \/
and, since Y

¢’~

3

o{z,v + s} =¢(:r:,v+s—1)~¢( \'M )
‘pv+p\\§
we shall have

\

N .
B +8) = olay +a- 1) 4ol -1 ol r_)

1
r4-8
AN\

for s = 1, 2, ol dl}}gﬁqlm@mgnplthese equations and,

after due cancellatlons get P\

o(z,m) = b(z,7) +“ Yy “(‘fw E (7,

‘.,\

yfs;

But
alm) = x(6) — 2(v/B) + 1,

whence we ois’ehm finally the formula due to Meissel:
.\ “

1(3)%@(3: W) a4+ B 2}(» G+D) L m

I
>z
— =l - .
pta
s=1
By means of this formula, but after lahorious calculafion,

Meissel found that below 100,000,000 there are 5,761,460
primes.

A 0
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Exzimple. Let us find the number of primes not exceeding 8,000.
First, we find

8,000 =20 /8,000 = 89.443

(20} = 8 (80} = 24

whenou
¥ =7, n = 16

Thus wc have to compute $(8,000,7}, and this is the most laborioua paﬁ'\
of the caleulation,  In order to be able fo use the auxiliary tabl%\wa
resort Lo the following relations

S(8,00,7) = $(8,000,6) — $(421,6)
$(8,000,6) = $(8,000,5) — ${470,5) L
S(421,6) = $(421,5) — $(24,5) = #4208} 4.

} = 211,14, 10,6, 6, 5,4, § 3}1 sum 265.
)
-3} 70, 42,30, 19, 16,2 “‘;'1‘3' 'ilbia‘fhPf" Yo RS 18,

$(421,5) = sh. N p41,8) = 77
#(8,000, 7) "= (8,000,6) — 77.

\

\/
=235 13‘\1177644332 sum 298

-
e
fossl S
Vo Jo

\

Apgain

. 298747, 34, 21,18,2, 1, 1,1, 1, 1,1, 1;  sum 207
- ":. #(470,5) =
,\\~

}f‘imd "

4

#(3,000,6) = $(8,000,5) — 4L

#(8,000,7) = $(8,000,5) — 168.

\r}'o have #(8,000,5) we use the following numbera:

4 . —
{4@} — 4,000, 267, 190, 121, 114, 103, 73, 62, 52, 44,28, 3,3, 2, 1, 1;

[
sum 5,064

N
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{%ﬁ} = 1,333, 800, 571, 364, 308, 38, 24, 21, 17, L5, 1), . 0, 6, 4;

=titn 3,529
¢(8,000,5)
¢(8,000,7)

5,06¢ — 3,529 = 1,535
1,535 — 168 = 1,367. O\

rn

Again A o
)

=D+ D _ e A
w4

s + 2

Ve

w(89) = 2¢ ,nxs

sum = 255 >

and so O
#(8,000,7) + 255 = 1672, Q

N,
t\hg sum

23 A\
8 = 2#(8‘000‘ B

It remaing now to subtract from this number

www,&bﬁsﬁ&jﬁ%’a org.in
the terms of which are found bé'f’.!’iir;ct count in a small table ui primest
(347 ="60  x(135) = 32

(@275 =~ 58  w(131) = 32
58) = 55  =(119) = 30

;."7(216) = 47 (112} = 29
(2,7 r(195) = 44 #(109) = 29
O 86 =42 2(101) = 26
R0, w(170) = 39 x( 96) = 24
'\\kz 7(150) = 35  =( 89) = 24.
Add.i’gg} these numbers, we have S = 615 and
»\"\, ) T(8,000) = 1,622 — 615 = 1,007.

“Thus there are 1,007 primes less than 8,000,

Exercises and Problems

1. By using Meissel’s formula compute the number of primes in each
of the first ten thousands.

Ans. 168, 135, 127, 120, 119, 114, 117, 107, 110, 112.
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2. Denoting by flz,n) the number of integers not exseeding z and
telativaly prime to & given number n, show that

T n
21— ) = lad
24(32)

O\
whers the summation extends over the divisors of n.
3. My an appropriste application of the inversion formula, {6»‘.\#;}1&
resnil of the preceding problem, show that "o

W\
= N
fe,m) = Z}p(m[(—i]- A0
d/n \V
4 7et 2, 8,5, ..., beall the primes not h@e ding \/21;. Show

thai the number of primes > n and not excegding 2x iz expressed by

Sief - B

N
whei the 6's are divisors (iup}ﬂ(k{ﬁ@wﬁW}FQ“@libl'ﬂl}y,ﬁ@igﬂ-jpiﬂg an
even number of prime factors,and the ¥'s are divisors containing an odd
nuriber of prime factors, Obmpute by this formuls the number of

prizazs hetween 100 and{ZQO. Ans, 21,
,: < }
A
t.\\j
PN
A
X{t\ ¢
\w
O
s:’:"
S



CHAPTER VI A
ON THE CONGRUENCE OF NUMBER: ("

s.'
N

1. Definition and Simple Properties of Congrufv ces. In
number theory we are often concerned with pn\pz vt = which

are true for a whole class of integers dxﬁ'ermg fFom « ; *h other
by multiples of a certain integer. Tak& Aor insia oo, the
fact that the square of an odd mtog{\x whon divided by 8
leaves 1 for a remainder. Here wg™bsive a property olding

for all odd numbers; that is, fona class of numbers Jifering
from ecach other by amx&tdpl&sﬂdfl gy oi&ihnother vxumple,
wo see that when the last digat of a nurber, in decim:l vota-
tion, is 6, then the last dlglt. of its square will also be 6. Thus,
in this simple example,\we deal again with a property shared
by infegers differiag by a multiple of an integer; namely. 10,

The consideration of properties holding for all infegers
dxﬂenng from wich other by & multiple of a certain integer
leads in g, ‘natural way to the notion of congruence. Two
integersa and b whose difference @ — b is divisible by a given
numb&xm (not 0) are said to be congruent for the modulus M
or shnply congruent modulo m. Gauss, who introduced the

. nf)tl()h of congruence, proposed the notation

vV a = b (mod m)

to designate the congruence of @ and b modulo m. Thus, for
example,
= 5 {mod 12), 7t = —1{ mod B).

Car} Friedrieh Gauss (1777-1855), whom his contemporaries used to
call “Princeps Mathematicorum™ (Prince of Mathematicians), wa2
126
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s the greatest mathematical genius of all time, only Archimedes
..Lwtnn heing compamble to him. One has anly to read his scientific
now published in Vol. X of his “Collected Works,” to be pro-
foun #lly impressed by the rapid successior of great diseoveriez made by
Gauss, especially in the period from 1796 to 1800. Not having had
z to the literature of mathematios in his youth, Ganss in a short time
seovered hy himaclf all that had been done in the theory of numbets
predecessors and far surpassed thern by his own incomparable
confyibutions. His great work * Disguigitiones aIlthmef.lca,e,"‘ p}lb~
lished 1o 1801, remarkable equally for its profundity and pcrfoqt\furm of
exposition, wﬂl forever remain as the great classie of numlger theory.
Though Gauss contributed to almost all branches of ma,trh(‘matlcs, nHm-
ber theory, or "}ugher arithmetie,” as he called it{ was his favorite
seienae,  To him is attributed the pheage: Mathemat;cb is the Queen of
Siciences, but Arithmetic is the Queen of Mathematics.”

As an immediate consequence of & definition of congru-
ense, we have that congruent num‘ijers when divided by the
mf,ﬁ’ﬂus lesve the same remamders and, conversely, numbers
withk the same rema,mdera‘ are, . o9 eﬁlt numbers. In
gongrience notation the dﬂﬂblblhty of 1S FptéBed by
the congruence ™
0 {(mad m).

&
fi

Accordingly P ’ »
X\ a = b (mod m)
mcans the same as
:.’\' g — & = 0 (mod m).

Thie m\’ -mentioned property of odd integers in congruence
not n can be stated thus:

:'i." a* = 1 (mod 8)
3 af
1 (mod 2).

The eongruence notation, like other notations, serves to
simplify to a very considerable extent the exposition. But
more than that: it naturally suggests new problems in number

[/

[l
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theory which otherwise hardly ever could have bhern stated.
On this aceount in number theory it is just as imporiant and
useful as the differential notation in the infinitesimai wnalysis,
The very sign used to designate the congruence rescinbles the

sign of equality, and it was chosen with good reasv, For
congruences with the same modull possess many \L(‘rrmal
properties of equalities. O

We shall enumerate now some of the ‘ilmplt‘st‘jul]pt iles of
congruences.
1. If a = b (mod m} and b = ¢ (mod m)”‘\theu a = = {mod
m). This property of “transitivity” is&lmost cvidrie  For
= b {mod m) meaps that ¢ — b is diﬁs‘ible‘ by m; alzu b = ¢
(rnod m) means that & — ¢ is dnusxb‘ie by m. But then

a,—-c=(c,—b)+(b——c)
is divisible by m; t%w&b%n’]]ﬁlwd‘ fridn

2. Two congruences \uth the same moduli can be added or
subtracted, member by ‘me mber, like equalities, In uther
words, from two congruences

A %a' }(mod m), B = b (mod m)

it follows th'a@

N A £ B=a+b(modm).
In fact'\

YA xB) ~(atdh) =A—a) + (B-b),
bpt\()n the right-hand side both 4 — g and B — b are divisible

by m; consequently the left-hand side is also divisible by m.
“By repcated application of this property we derive the fol-

lowing gencral proposition: If
4 = gq, B =5, Ce=e ... (modm),
then
A+B+C+ - =a+b+ec+ - - (modm).
3. Two congruences with the same moduli can be multiplied,
member by member, like equalities. In other words, from
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4 = a {mod m)}, B = b (mod m)

it fefiows that
AB = ab (mod m).

The Jdifference AB — ab can be written thus: N
e Y
AB —ab = (A —a)B 4 a(B ~ b), N\

N/

and, since 4 — a and B — b are divisible by m, it j&-eléar that

" AR -~ ab is divisible by m also. By repeated, a;ppliéation of

this property, we derive the following general proposition:
I : . )
4 =aq, B =5, C= c,’,?}! (rod m),

then x\ -
ABC -+« - 2= abe -:’-’.-"(mOd m).
In particular, if wﬁ’\::;.étbrau

3 ibrary orp.i
1 = oY | }? Y.org.in
then "\

QQ“ = g* {mod m}

for any positiveakliﬁeéer exponent.
Lot 7N ’ .
H(2) = poz* +part4 o pad
he g poi')?hﬁ}mal with integer coefficients involving an iﬂ,dei_er-
T E:\,:r, that is, a letier without any numerneal meaning
with “hich we operate by the ordinary rules of algebra as if
pu Were a number. As usual we shall denote by f{a) the result

\wof substitution of a number a instead of z in this polyno-

\.

mial. Then we can state the following simple but important
proposition:
From the congruence
A = a (mod m)
1t follows that
f(A) = fa) (mod m).
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In fact
Ar = a7, Arl = gn 1 C ey A = o {vwd m),
AN
and
poA” = poa, prA»t = pla“*l L. "\\

Praad = paoa, Pn = P (mod m}

whence, by adding these eongruences mombpr b\r m i ll)or, we
have £

\\'
\:"’3
poA™ +pdrt - pa =
poa” -+ pran s - 4 op dinod m);

Ny

that is, ~
Fa) = f(a)ffndd m).

Before going farther 1‘( 1 vé gl‘ to show the use of th: proper-
I

rar .
ties of congruendés Whl o esga%]hshod in a few <imple
examples. N\

$

Exzample 1, Fermab\\tated though confessing he dul not possess a
valid proof, that {L{&mberﬁ of the form

O 2" + 1

N/

are primeg, \'Iéhlﬂ statement was refuted by Euler, who showed that the
numbcr\‘ ¢

\\,z PEIE

’lS}l\-’lSlblB by 641. Without writing it down the divisibility of thisg
;\T'arge number by 641 ean be established with the help of congruences
\”\) *" without much labor, In fact, we have

2% =4, 20=16, 2* =256, 218 = 2562 = 154,

232 = 1547 = 640 (mod 6§41);
that is, )

232 = —1 (mod 641), 2% 4+ 1 = 0 (mod 641).
Example 2. Let us find the remainder obtained by dividing

3100
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by 103, In all cases when the exponent Is large the operation will be
greatly shortened by resorting fo the fact that every integer is a sum of
powers of 2, Thus in our case

100 = 64 4-32 + 4

amnd &\
) f100 = 364, g2, A o
: . 2 AN
Now e g\\ 7
N/
Si= Rl = —20, 3% =20%= —4, 3§ =16, ,3??‘5 —47,
3% =47 = —13 (mod 101), N\ 7
1l ngai 4
ard again «\

3
54.3% = 2047 =31;  34-372.3% = 1381 = 1 (mod 101},

wiich shows that &
E]

310 = 1 (modd0ly

and so L is the requested remaindery D _ '
Example 3. Familiar critcriaﬁmﬁgg}%it by 3, 9, 11 follow immedi-
R - u 1] - -
atcly from the properties of gengruences. Eeggy WHOLEHIA N be repre-
seritad in the decimal notatioffg,:i.hus:

N = alniob + 10% +-10°%d + - - - .
Findicing that + )
. \
16 =2 S10r=1 10°=1 ... (mod9),
we have Vo Oud
N Neat+btetdt - @mod9.
£ N » .
Henpe/Avttumber is divisible by 9 if and ouly if the sum of its digits is
diy L‘a\@l’é’hy . Since the congruence holding for 4 eertein modulus evi-
c{eﬁ:ﬁ.‘ly holds for any divisor of this modutus, we have also
~\:> N=a+brec+d+ - (mod3)
\' which shows that a number is divistble by 3 if and only if the sure of its
digits i divisible by 3.
Wiih respect to the modulus 11, we have

0=—1, 0t=1, 1°=-1 ... (modll}

and so
Neg—bte—d+ - (modil)
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The number N, consequently, iz divisible by 11 if and orty if the alter-
nate sum

a—btec—d+ -

of its digits i divisible by 11, 2\
Since congruent numbers leave the same remaindurs wiaen digided
by the modutus, the preceding congruences can he 1-m:--.!.,i{s‘:sﬁnding
remainders in divisions by 3, 9, 11. :..\’\
N/

L ¥
e

Exercises N

1. Find the remainders obtained in dividing '\\
2{6’ 7126’ 8130’ \:\.}
respectively, by the primes 47, 127, 131, 4
2. Bhow that the congroences \
3

a= *1 and
www,db{‘qk}i‘i‘bl'ary.org.in
at =1 ?:.%*nﬂ ar =9 (nlf)d lﬁ)

I
4

3 {mod 38)
imply, respectively,

3. Derive a c:rit.erion.gf divigibility by 7.
4. Bhow that all pdd numbers satisfy the congruences

S

at =1 (méd16), af=1(mod32), @ =1 (mod 6L

and in genepai:)
’ .:;}f g = 1 {mod 2#%2).
Eigﬁ}}t'nentary Properties of Congruences Continued. From
R zf{\ duality I
\\,'by canceling » on both sides we get a true equality

) 2
/

a4 =25

provided # is not 0. Not s0 with congruences: from a con-
gruence '

ng = nb {mod m)
in general we cannot conclude

a = b (mod m)



ON THE CONGRUENCE OF NUMBERS 133

even i n 18 not divigible by m. The first congruence means
that sz — nb = nfe — b) iz divisible by m. Let d be the
g.c.d. of nand m; then

5@ —b)

N\

is divisible by m/d and, since n/d and m/d are relatlve‘iy '

prime, @ — b must be divisible by m/d Thus fron’aﬁ'the

s

COTE Inence N
na == nb (mod m) ,\'(f
it Tollows only that O

a=b (mod %1) ,xﬁ\\;

W

In sase, however, d = 1; that is, n an.d % are rclatively prime,

we have
b‘,\(mdim‘)a‘uhbl "ary.org.in
Thuy the rule of cancellathg “holds for congruences on the
condition that the canceled Tactor is relatively prime fo the
modinlus, <\
Several congruer&' i
M= N (moddy M =N (modb), ..., M =N (mod b

. - 3
amaount to assihgle congruence

i»\’\ M = N {mod p)
for ¢ \xf(;dulub which ig the least common multiple p of the
ﬁle‘nrh a, b , I In fact, the given congruences show
.Qh‘\t M — N is & common multlple of a, b, , Tand as such
NJ# divizible by x or
M = N (mod g
Conversely, M and N will be congruent for moduli dividing u,
in particular for moduli @, b, . . . , . When q, b, 1
are relatively prime in pairs, g = ab - -+ L Consequently} in

this case, the system of congrucnces
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M = N (mod a), M = N {mod b),
M= N (mod )
implies
M=N(modab -+ 1), )
and vice versa. \
3. Distribution of Numbers in Classes Modulo s In
dealing with congruences we may confine ourselv.~ tg posﬁwe
moduli, since a congruence holding for the mmh u» m helds
also for the modulus —m, Of two numbcrn ® m;,ruent for
the modulus m, each is called a *“residue” (Jf»ifht oiher modulo
.
Every integer is congruent modulo ?Q\ﬁo one aud only one
of the numbers \

0,1,2,...0%— L (4)

When an integerve- @@‘dﬂliﬂﬁﬂ%‘}r%ﬂ the remain:icr will be
congruent to e and willbe contained in the sy=tem (4).
Thus the first part of the statement is proved. The second
follows from the fac “thiat no two distinet numbers of (1) are
congruent mod m since their difference is numerically
less than m and)\being different from 0, cannot be divisible
by m. The. dlstrlbutlon of integers into classes modulo m
is based oh.this simple remark. That is, if we put together
in one Elﬁbs all integers congruent modulo m, integers will be
disthib buted into m classes: one class will comprise intogers
cm’l&uent to 0; the second class, integers congruent to 1, and

.\30 ‘on; and finally, the mth class will comprise integers con-

;"gruen‘r to m — 1 modulo m. If, from cach of the m classes
into which all numbers are distributed module m, we pick
up one number, the m numbers thus selected:

FruTe, . - . 4, Tm

are representatives of these classes and constitute a so-called
“eomplete systera of residues modulo m.” Thus nunbers of
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the system (A) ropresent one particular complete systern of
residuss—the system of least positive residues. By its very
definiiion every complete system of residues comprises m
incongruent modulo m numbers, and, viee versa, every system
of m incongruent numbers is a complete system of residues
moduie m. For m Incongruent numbers necessarily a.re\
reprosentatives of m classes modulo m. N
4. Yarious Useful Complete Systems of Resldue,s. If r1,
TPy . s Tm reprcaent some complete system of resldues
modnio m and » is an arbitrary integer, then tha}mmbers
At n,re+n, ... ,rmﬂ‘-\ﬁ:,'
being incongruent modulo m, const-ityiﬁé'another commplete
systom of residues.  For instance, the numbers

mu+1l,n+ Z\yw.y{ffib;t:.a\’uﬁbﬂﬁry'.ol’g.in

form a eomplete system of regs'i’dﬁes. In particular, if we take

n = —(m — 1)/2andn = “m/2 + 1, respectively, for an odd
and oven m, two systendswol numbers
i 3
wmo— 1 m— m—3m-1
- "'2__"} _“_QE R T PR :T}T
oom 7
+1"m+2 N A )

repres \\\‘c.::ompletc systems of absolutely least residues for an
odd gnd even modulus, respectively.
Let a be any integer relatively prime to m and ry, 7, .+ - -,
\ %ay some complete system of residucs; then the numbers

ary, are, . .+ 4 @Ffm

form another complete system of residues, It suffices to
prove that no two distinet numbers of this system are con-
gruent, and this is almost evident, sinee the congruence

ar; = ar; {mod m)
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implies
ry = 15 (mod m}),
which is impossible, In particular
0,2 ...,{m-—1)a QO

with a relatively prime to e ropresent a compledc ?at\em of
residucs modulo m, WV

Exercises and Problems A
1. Show that the numbers
1, 3,3, ..., 3%and0
X’ 4
form a complete system of residnes moduQ (i\? . Do the aubers
1,22, . . .,‘2;5 a.nd 0

wonstitute a comp{@w\aﬂmmmmm’gd}ﬂthc game neaius?
2. If g is relatively prime tow’q wnd b is an arhitrary int.ooor, show that
the remainders obtained by»dw”idmg the numbers

ax 4+ b ..{fur =0,1,2 ... ,m—1
by m coincide mthiQ’l 2, ..., ,m — 1, save for order. TFience prove
that
O es +0] _ @ = 1ym — )
A ar a — 1}{m —
3 _ ] = ——— b
o 2[ ™ ] 2 +
N =0

inder in the division of b by d, then the numbers

X

\g:f}’d is not relatively prime to m, but (a,m) = d > 1, and 7 i3 the
1;@&

AN ax -+ b for #=0,1,2 ...,m—1

"/

\} when divided by m leave the remainders
dz+r, =012, ... ,%‘—1,

each repeated exactly 4 times, Hence deduce

m—1
b - —_— —
2 1ia_x_i_,_._:| £{i_,_1_)(f%__12 4+ - ‘)—1 +b—-r

m
=0
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5, (veneration of Complete System Modulo ab When
(o0} = 1. A complete system of residues modulo ab, where
a and b are relatively prime numbers, ¢an be generated by
means of the complete systems of residues

i, 2, - . ., Ta . (A)
81, 82, - . ., 8 (B)\
for the moduli @ and b, respectively, in the following two ﬂa}fs
Eirsi, consider numbers of the form N
ar + ¥, R4

whers z and ¥ run independently through the fumbers (B)
and {4), respectively. In this manner we ibaare altogether ab
numbTs \ v

as: + 75 t=1,2 ...,0b; . 'j~12,...,a (e

which constitute a. complete ;;;’\fé'glb E?"%ég{&ugg‘“{ﬁg& ab if we
can urove that they are all dzﬁerent mod ab; that is, that no
twe of them are congrueat For this modulus. Now for rela-
tively prime a and b th@\gongmmve

a&\};\n as; + 1 {mod ab}

is entirely equiya]ent to congruences (Sec. 2)
N\

x\ as; + r; = asy + i (mod @)
Y asi+ = as + n (mod b).
O\
The first implies
') r; = ry (mod a),
RS
Qv\hich is possible only if »; =, { =j Then the second
congruenee, after canceling a on both sides (See. 2), becomes
8 = s {mod b),

which i possible only if & = &, k = ¢. Thus two I?‘*‘m.bers
of the system (C) corresponding to two different combinations

N
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of subscripts 7, 7 are different modulo ab and, thevefore, ()
represents a complete system of residues for this windulus.
Secondly, consider numbers of the form

axr + by, O\
where 2 and y run independently through numhers, (B)* and
(4). The system of ab numbers N\ *

as; -+ bry; 1=12...,b j=1,2"}<f':'«.:.,a (D
is a eomplete system of residues mod ab. ‘.I*fsu&"f}m nurbers
b?"l, b?"g, P ,ﬁ)i\a':
by the concluding remarks of Sec.ﬂ&,\ form a comipice system

of residues mod a and can be takén’instead of

www.dﬁ'nadh:bqi:f;ipy\org'dn
The truth of the stateny-v;ftf follows then from wha. has been
already established. ~3%

6. Generation of Complete System of Residues Mod a.
Let C\\
\\ rl, TL‘; e . ,rrx

81,8, ..., 8

be compleils:é ’éystems of residues for the moduli ¢ and a1 = ¢,
requeﬁi;\}cly. Then ca = a» numbers

et s i=12 ... .0 j=t12....c (B

.Eﬁlstitute a complete system of residues mod a~. Tt suffices to

~\ w/prove that these numbers are different modulo «’. The

congruence

@l 4 5 = @', + 8 (mod a7)
implies

"y + 8 = a* Y3 + 5 (mod ¢*b)
or

s = & {mod a-1),



ON THE CONGRUENCE OF NUMBERS 139

which requires s; = 83, § = . But then
a*lr; = a* Y (mod a®),
whenee .
= 1 (mod a) A\
and r; = rg, 2 = k. Thus the statement iz proved. A
T. &n Application. In & subsequent chapter we shall .desa,’{’ﬁ

with arithmetical properties of so-called Bernoullian nl{ng)ers,
and to this end we must investigate some pmpertie;s’bf’%ums

Sua) =0 4 1»+20 4+ - - - 4 (g <A
of powers of consecutive integers—-propert.iegdwhich afford a
good illustration of principles laid dowai/in the preceding
sections of this chapter. Bince the t}u’l}l}bers 0,12 ...,
a — 1 constitute a complete system of residues modulo ¢ and
enter into S,{a) symmetric&ll)?{“f{'}e’%hnﬁlhhhmy.m-g.in

Ba(a) == 14 + 1§ £ ¢ + 12 (mod a)

for any complete systern {)f vesidues
¢ '\i’F.ﬁt re, . . .7

moedalo ¢. Let dSycombine this remark with the faet thai
the numbers N\

Ve \d asi -+ 1y

N\ .

form a gomplete system of residues mod ab if a and b are rela-
tively ‘prime and

N 81, 82, -+« 3 S
mJ

\‘;"' 71,72, - + -, Ta

represent complete systems of residues for the moduli b and g,
respectively. On aecount of this we have

8.(ab) = E(as.- + r;)7 (mod ab)

Wi
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and a fortiori

S.(ab) = 2?‘}‘ = bS.(a) = bSu{a) + an, (b} {mod a).
P
N
In the same way we find the cangruence
Sn(ab) = b8,(a) + a8,(5) (mod 1), (D

and, since both congruences hold for relativ "ol }.la;"ﬁne moduli
g, b, we conclude that P\

Salad) = bS.{a) + aS,(b) énfggd a.f,-}_

In other words _ A,
Sa(ab) = bS,.(a) “+ a?S (b} + Kub,

where K is an integer. Thls,equahty shows that
w, db1 aulibfagy .org.in
“Biah) ) 8, 8.() -
ab ‘v.’; “a T T
for relatively primeldy b, is an Integer.
If three inte 8erS)a, b, c arc relatively prime in pairs, then by

the same prope?ty
| O Buabe) _ S _ 8,9

=K,

\/ abe ab c
is ag@i}é&er, and consequently
& @ s 5 8.)
Ay abe a b ¢

N

N\ is an integer, also, Proceeding in the same way, wo conclude
\/ that in general '

Sabe - D _ 8@ _ S 80
e Tp T i

abe - 1 a b B

is an integer if a bye ..., 1are integers relatively prime
in pairs.
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Let
— plmpﬁ‘“ SRR T

be a priine factorization of m.  Thena = py, b = pg=, .
I = p,~ are numbers relatively prime in pairs; consequently

E0m)  Supe)  Sulpe) 5.0 A

vy Py pzm psq, Qe

1% always an integer. Thiz theorem can be smlphﬁed\ still
more by considering 8,(p*} where p is a prime. Byl‘he result
egbablished in Sec. 6, }

Su(p?) = 2(9, + pr) (mod\pj),

where r; runs through the numbers 0,,1 é , #— 1and
g through 0, 1, 2 , P — L:ithe respectwe complete
systemn of rpmduw for P and %ww@f%‘ﬁﬁmhtheurem
(Sj + ?-_-‘_-.‘:---l}-s_)ra — 8;' + _sga—lr‘pa-"-l _I_. n(n 2 )sﬂ 2?- p3a=2

~\ + Ty,

and in {he case a >\1\ a]l the terms beginning with the third
are d.lVlm Lie by p* » Henee

3

\%.*\F \“—1:*()" = 5 -+ nsfirpt (mod p7).

Takmgd\ Jsum for fixed § and running 4, we have
E(s, + peirgt = pat 4 ns ‘p(p2 B, pe-t (mod p%).

If P1s an odd prime, the second term on the nght hand side is
divisible by p=, and so

D (s pirs)» = psy (mod ).
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Summing these congruences for the variable 4, we get finally

Sa(p%) = p8u(p=Y) (mod pe),
which shows that I\
8alp?) _ Su(p=) A
3 z—1 p A
p p :',;\\“.x
for an odd prime and & > 1 is an integer. By rentated appli-
cation of this result, we eome to the conclusionii it for an odd

prime p { &
\:"\\
Sa(p?) _ Salphi D
P AN,
is an integer. e,
For p = 2 we have ,\
(5 2 M Fk sho@eiminsr (mod 2,
: LN
whence N

s
™S

.S,‘(2a) = 2,{7‘\'(2u:1) + 2“_'1?’3,8,.._1(2“_1) (mod 2a)_
Nowifn > 1,\'\\.;
SMI(Z?“:\I) = =1 + 2"_1 -I—- .. + (2a—1 —_ 1')n—-—1_
Tt is cleghly’an evon number if o = 3 and odd if & = 2; hence
for og\>\2 again
e

\\\w ' 82(2%) = 28.(2%) (mod 29),

Sbut for & = 2
o..\s W ’

8a(2%) = 25.(2) + 24 (mod 2),
By the same reasoning as before we arrive at the conclusion
that for n > 1 the difference

5,29 8.2)

2 2
Is an integer if ¢ > 2.

bol 3
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Cor:bining these conclusions with the result previeusly

egtablizhad we derive the theorem due to Staudt:
If n iz an even number and py, Ps, . . . , Pe ave different
primes dividing m, then the difference
Salm) _ Salp) _ Salpe) . _ Salp) N
mn P Pz P ~\' N

is always an integer. A\
N

Chr. von Staudt (1798-1867), ofien called the ““Eueli 'of”the pine-
teenth ceniury,” wad a famous German geometer. JHe‘treatmeni of
projective geometry, without appeal to metrieal eonsiflerations, and the
purely goemetrical introduction of imaginary etemente,/are achievements
of the highest importance. Only a few of Stat\t,s papers are devoted
to numbee theory, but they are as :mgemous a8 the rest of his work,

8. Reduced System of Re51du All numbers of the
same clase modulo m have, w:it m g%%rhé%,‘i%é’fe%&‘bommon
divisor. Forif

A= ‘a‘(mod )

2

and {a,m) = d, then ¢\

\A\E a = 0 (mod 4);

that is, d i+ » gofdmon divisor of 4 and m and, as such, divides

(A, ,m) = d PN But the same reasoning shows that d' divides d,

and so A*" Claszes of integers relatively prime to s are

represghied in any complete system of residues by members

of this dystem relatively prime to m.  If these members are
A

\

3 £, P2 - - -y Py

they eonstitute a so-called “reduced system of residues mod
m.”  Since in the complete system of residues

1,23, ...,m

there are exactly ¢{m) members relatively prime to m, each
reduced system of residues consists of exactly o{m) numbers.

N




"
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This interpretation of the meaning of ¢{n) 1vay be used to
establish directly the fundamental property o .-(m); namely,
that

plab) = o(@)e(®) o
for relatively prime a and b. Let O\
'S\
1 ?-2, voeos g Tu % N/
81, 8z, . . . , S (""‘:

be complete systems of residues for t-hgﬁnﬁis.i..ii a and b,

respectively. The complete system fopthe no=lulus ab is
represented by ab numbers N
as; + bf‘\
To have a reduced S%'ste %Péi‘ ﬁhooae frow »mong these
WAL raull .
numbers those which are, re}a ely prime to o or, what 18

the same, to @ and b &.epgrately. Now
»5' as; + br;

will be relati ed\y prime to ¢ if and only if r; is relatively
prime to a. )\ }hat restricts the choice of r; to o(a) numbers.
The samper n,umber will be relatively prime to b if and only it
8 18 relatwely prime to b, which restricts the choice of & fo
elb)-dtmbers. Consequently the reduced system mod ab
c@tﬂms exactly ¢(a)e(b) numbers; that is,

2 8

N Vg
...\' Y

Q°

olab) = p(a)e(d).
By virtue of this fundamental property the evaluation of

@(m) is reduced to the particular case m = p= where p I8 a

prime. Now in the series
1,2,8, ... ,p"
the only numbers not relatively prime to p are

2,2, ...,
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hence )
e(p®) = p* — p*t = p=i{p ~ 1).

Tt i+ instructive to compare this method of evaluating of{m)
with tlie twe methods expounded in Bec. 2 and Sec. 6 of Chap.
Y. ‘The new method iz based on principles of far greater
geuctsiity than the former two and can be more easily extended )’
to other investigations of similar nature. s)\ :

Exercises and Problems - N

1, Lef flz) be a polynomisl with integer Goefﬁclents,‘qﬁﬂ et ¢(an)

denole the number of values. . \

fy, f1), ... fln - 1) A
\\

s‘o

D) ~ A Brmatibrar

ary.org.in

relatively prime to n.  Show that

%
«ay

for 1rlatively prime a and b. &Y
2. &how that AN
(%)= PElp — ap)
'\

where oy is the number of nn)\egers

\0) fay .. fw -1

divisitle by the prmre p
3. in casc ffa " (= e (B — e} o (@ — e wheree ey L L. 6
are mtp“i;; ‘show that a, is equal to the number of distinet mod p infegers

in the semd ™/

A €1y €2y - . - 4 Epe
™S

o \4”\;How many integers of the form (a) s(x + 1); &} &* ~zforz =1,

/. . ., narcrelatively prime to n?
b. How many integers of the form

EY

e tl) | g retd)

(a) 2 2

forz = 1,2, . .., nare relatively prime to n?
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6. Supposing that &, b, ¢ are three positive integer without common
divisors, show that among the fractions

¢ a+b a+°b c{_—_ﬁ-(f_——!).‘:_
¢ e ¢ c 2\
b .
there are exactly elbe) fractions in simnplest terma. \* \*
¢ ¢
7. Letting o and b assume independently the values 1,3\2} eaam,

we have n? different pairs {a,b). Bhow that the numln ;.-s,-'}l" pairs satisfy-
ing the condition (¢, b,n} = 1lis 2 \
AN

14

P

(-0 6%

P Py . . ., Pa Deing distinet pnme dur\)rs of n.

9. Theorems of “%%ﬂ%{ Suler. In a Iotier dated
Qctober 18, 16326” Wﬁgllzgssed “a his friend Frenicls, Fermat

states a result of whlchvag important theorem, u known a8
the “little Fermat Jheorem ” j& a consequence. In modern
notation this the?mn amounts to the statement that

3

N/

B\ @~ 1

is divisible;'bi? a prime p if o is not divisible by p. As usnal
Fermat,does not say how he arrived at the result. It was not
ti1"1786 that Euler made public a proof of Fermat’s theorem,
tl%gh it is known now that an identical proof was contained
1}1 manuscripts of Leibnitz unpublished at the time. Later
Euler discovered a more general theorem:
Ii @ is relatively prime to m, then

N

aeim 3

is divisible by m; from which, in case m is a prime number and

consequently o{m) = m — 1, Fermat’s theorem follows
immediately.
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The proof of Euler's theorem, depending on the notion of a
reduced system of residues mod m, is guite simple. Let

AL P2y v o 5 Peim)

be a reduced system of residues mod m.  Since @ is relatively

prime o m, the numbers O\
. AN\

Gy, AF2y « « 5 BPpim) « \/

L 3

-form ancther reduced system and consequently are e,\bngrhent
mod m to the numbers py, g3, . . . , pom taked a certain
order. That is, v

%

’ 9, \ll
api = pay QP2 =05 . ..o O = po (rood m)

where ¢, 8, . . . , o coincide in their €O¥llity with 1,2, . . .,
elm). On multiplying these cwmggtéﬂﬁuwub%@%rg in

ar®pigy v 0 pomy = PP T 1 * Perw (mod m),

and, after cancellation offmips * * * Peomy, Which is relatively
prime o m, i"\\
’\N’Y”D =1 (mod m).

But this is Iulexls theorem in congruence notation.

10. Another\Proof. Originally Euler proved Fermat's
theorem in‘Arfotally different way based on {he use of the
binomi@i\:e}tﬁansion and the almost evident fact that the
binomial*coefficient '

A o PP~ =it 1)
NN P 1.2...?’ .

for ¢ < p is divisible by a prime p. In fact

12 ii=plp—1 - - @—i+1
is divisible by p, but 1 -2 - - - 4, consisting of factors <P,
18 not divisible by p; henee C% is divisible by p. e
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Fermat’s thcorem implies that for an arinirary integer g,
divisible by p or not,

a” = g (mod p).

This is obvious if a is divisible by p and for ¢ nondivisibla by\

p follows from the congruence O\
e ! = 1 (mod p) O

7%
. A
equivalent to Fermat’s theorem. Conversely. s ebngruence
follows from

L ¥
/N

N
a” = a (mod p) \

ni/s

if @ is relatively prime to p. It SfoHccfi,QT}iervh;r.:‘, to establish
the last congruence. By the binomial theorer: o have

(%ihl_)jbr—alﬂfbrh—{:?éﬂrgﬁﬂ— SRR

and here all the terms excepting the oxtreme oney re divisible

by p, whence A
¥y P Q

“‘\
\({&-P 1)P = a7 4 1 (mod p)

or
(@) — @+ 1) =ar — g {mod p}.
\\¢
By repeatéd’application of thig congruence, we conclude
e R P P
< = 0 (mod p);
@” = ¢ (mod p)

for any positive integer a. If a is a negative integer, it is
congruent to a positive integer «. Now from
a? = a (mod p), a = a (mod p)
it follows that
a* = ¢ (mod p).
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Apnather variant of the same proof is ag follows: For two
arbitrary integers 4, B we have
(A + By = Ar + 4B+ - 1 B,

whenso

(A + B)» = A7 + B? (mod p);

W
T P\
Sgat, \"}

(A+ B+ Cp = (A + B)» + Co = 4> + B2 4 C» (1o p),
and s0 in general \:"\\ -

Ny

(A +B+ .- +K)»EA:)+B:°+ s K> (mod p)

for any number of integers 4, B, Y \ It suffices to take
A=73="- =K=1 and dPnate' t.helr pumber by @ to

get sgain W d 1aullbra1_y org.in
't osg

ar=a (.mﬁd p)

By this method of proof Euler s theorem ean be derived as a
conzequence of Fermaf s.’bh sorem. The congruence

\}"1 =1 (mod )

holding fer a nomchwszble by p amounts to
o

N\v al=1+hp
with hﬁ:n integer. Raising both sides fo the power p, we have
N _
\”\, ape-l) = 1 4- ?Ijhp + o+ h;np‘p =14 h’pg

with another integer &’. Raising both members to the power
P again,

a),s(P-IJ = 1 + %hr,pz + - + h!ppﬂp = 1 + h!rps

N\
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with integer A”. Proceeding in the same way, v establish in
general

al’“_l(ll'—n =1 (mod p«)_
Now let .
N
nm = puqﬂr’r PR
be a prime factorization of m. Then, sinee ¢{m; i glj\{ri‘sil\)le by
p*'{p — 1), raising both members of the precedii hengruence
to the power o{m)/p>"(p — 1) we get A0
a*™ =1 (mod p*) ,"‘}\\’
and similarly for a relatively prime tg:»{@
a¢im = 1 (mod ¢f), aﬂ’(":l.%"l (mod rv}, . . .,

whence, because the moduli are\rélatively prime,
www. dbraulibrayy.org.in

ar =1 (mod m).

Exéreises and Problems

1. Tt was surmised.& some time that 27=1 — 1, though ivisible by p,
is never divisible b{"p?. This would entail important conseqnonees were
it true. Show tm the surmise is falge for p = 1,093. ]

2. There aré domposite integers n for which a»? = 1 (o u). Verify
this for a39@i n = 341;a = 3, n = 12L.

3. P;We.‘hhﬂ.t n is a prime numher if for some @

\v
\wf a1 =1 (mod =)
O
_twghile none of the congruences -
..\’. )
n—1 =1 n—1
a? =1, ea? =1, a®™ =1, . . . {mod n},
where p, ¢, r, . . . are distinet prime divisors of n — 1, holds, Test, in
this manner, the number n = 509,
4. Tfm = pegf¥ - . - and A(m) is thele.m. of pe—i(p — 1}, ¢ g — 1),

rr—=1), ..., then

ghimt = 1 (mod m)
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for o relatively prime fo m. The exponent x(m) may be considerably
smaller than e{m).

6. Zhow that every prime number (except 2 and 5) is a factor of an
aalimitod mumber of integers all of whose digits are 9. Hunr: By Fermat
theorem (10%)r—1 = 1 {mod p).

8. Ehow that n'® — n for every # has the factor 2,730. O
7. Show that “Fermat's quotient A
28N
¢\
om-t — 1 N\
- \‘ /
P "

may be g square only for the primezs p = 3and p = 7. AD
8. I'rove Fermat’s theorem by establishing frst the cong.meﬂce

W

(a+1)”“1—1-==a-ap 1

dah
(m(’:‘@“

kolding fora =1,2, ..., — 2. “

11. Hesidues of S.(p) mod L ». Ifor P be a prime, » =1
and, as in See, 7, aulibrary.org.in

Sp(p) = 1+ 2» -l:’:,‘ v —
Then )
Sa(pl'= 0 (mod p}
if nig sot divisible b Q{ w2 1, and
(Balp) = —1 (mod p)
if n iy a multipleg B p — 1. The second part of this statement
is a simple. *ébnsequcnce of Fermat's theorem. In fact, in
case n “‘({(mod p— 1D
124, 2=1 ..., (@—1)=lmdp)
and
{\ Su(p) =p — 1= ~1 (mod p).
The first part will be proved by establishing certain linear
relations connecting Si(p), Sa(p), . . . - Take z =10, 1, 2
., P — 1in the identity
( + 1) — go = Clgot + Cx=? -+ - -+ + Ciz + 1
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and sum the resulis. We get, then, for a > I

p* — p = CiSau(p) + C28aa(p) + - - - C5:0);
that is, A\
CL8,i(p) + C:8s(p) + - 4+ 18, () 1= 0 (mod\p)

Takeherea = 2,3, . . . ,p — 1;from the 1{-5,1‘,-r131g,$yst-em of
congruences R N
28:(p) = 0 \v
38a(p) + 38:(p) =0 \ 4
48a(p) + 6S:(p) + 4S:(p) =0 .\\,,‘,

(b — 1Spalp) + %@g o) + -
www dbrauti LY.-or
re QY b — DS(p) =0

. "'

it follows suecessively "y«

Sip) =10, Sz(p}\ 0 C e ey S, afp}y =0 (I‘ﬂOd P),

and this prove 4\ ﬁrat part of the theorem for » nondivisible
by ¢ and le%sii{ﬁanp — 1.

I » isy ne{t divisible by p — 1 and > p — 1, then, OR
dlﬂdln{n By p — 1, we have

O n={p— 1)b4r
Aﬁ\h r < p — 1 and positive. By Ferinat’s theorem

»\"\ K»= K (modp); K=1,2, ,p—1

/ and .
Sa(p) = 8.(») = 0 (mod p).
In Bec. 6 it was established that

San(m) _ Se(py) N Ban(ps)

m P B
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is an integer if pi, pa, - - - , P. are all distinet prime divisors
of m. By what is proved in the present section
Sanlp)

r . o

is an integer if 2n is not divisible by p - 1 and \ N,
S2ﬂ(lp) + 1 ":}‘ N/

p B, \
0 - . - » . . v W
is an integer if 2n is divisible by p — L Dennf}ng therefore
by @, b, ¢, . . . all distinet primes dividing’ and such that
a—1,b~1¢—1, .. . aredivisors o Sérwe cenclude that

Sa e
2 (”"’) +1 + g

is always an integer. 'lhls %@ﬁrﬁbltmhbmrym@ﬁﬁ due to
Staudt.

12, Wilson's Theorem. * An English mathematician of the
eightecnth contury, Wanhg, in his book * Meditationes alge-
braicac” (1770) repetts a very interesting property of primes
communicgisd to\&m by an amateur in science, s certain
Wilson. It gpasdby the name of Wilson’s theorem, though
we know ndwthat the same property was observed much
earlier bx:beﬂmitz, and consists in the fact that

.§u 1-2-3---(p—-1+1

i:‘i\,jailways divisible by a prime p or, in congruence notation,
N 1:2-3---(p—1)4+1=0 (mod p).

Confessing his inability to prove this theorem, Waring adds
that the proof must be very difficult because there is no
nolation to designate primes only. Of this Gauss observes

that proofs of such truths must depend rather on notions than

on notations, The first proof of Wilsen’s theorem was given
by Lagrange in 1771.
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Joseph Louiz Lagrange (1736-1813), an [taliun . birth, though he

wrote only in French, was perhaps the grentest n... enantieian of the
eighteenth century, Napoleon nsed to cull him i 7y Pyramid,” and
such he was indeed, Lagrange’s merits are great =o' nany.  He was
the first after Euler to devote considerable time, niwinst the adviee of
his friend 1)’ Alembert, to speeulations in number thi-v.  Lagrange wds
the first to prove that every integer is a sum of four wnares and todey.
foundation to the arithmetical theory of binary quule f:srrr}s,.\' N
We shall present here a very simple proo! i1 .-:[-'(1",iﬁdeed an
“notions”) due to Gauss. If @ is any nuniix py0l the series
"\
1,2,...,1}‘—'1, \J
then

W\
a,2a, ..., —Du
&

form a complete system of residues'miod p with 1 exclusion of
0. Consequently ol E‘iﬂ@‘gﬁﬁ?&i@ of the nmbers is con-
gruent to 1 mod p. In otheriwords, to any ¢ = 1,2, . -
p — 1 corresponds one an@“only one number in the sameé
series, such that N

Lae’ =1 (mod p).

ne -
Sueh two numbers are called associale numbers. Numbers
which are idemtical with their associates are 1 and p — L.
Indeed the donhgruence

K7, at =1 {mod p)
iz e(iu{x{ﬁiént to
Q:f\ (@ — 1) 4+ 1) =0 (mod p),
rwhence either @ = 1 (mod p), thatis,a = l;ora = —1 (mod

ot

P), that is, @ = p — 1. If we exclude 1 and p — 1, all the
remaining numbers

23, ...,p—~2

can be combined in pairs of associate numbers, and we shall
have ag many congruences of the type

aa’ = 1 (mod p)

:
2
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as theve are such pairs. Multiplying all these congruences
membor by member, in the left-hand side we shall have the
prodiuct 2-3 - -+ (p — 2}, while the right-hand side will be 1.
Thus

2:3 -+ (p—2)=1 (mod p),

and multiplying this by
i(p ~ 1) = —1 (mod p), ~&

1-2-83 -+ (p—~1)=—1( modp)( ‘H

which is equivalent to Wilson’s theorem. ¢
To Hlustrate this proof by an example, 18 us ta.ke p = 13.
Then the associate pairs are: 2, 7; 3, 9; {,,10 5, 8; 6, 11; and
3-9=1, 41!{&1 5-8=1,
611 = 1 (mdd)13).

The sroduct o the Teft-hagid- seaes IR orEdn 0 -4 - 10
“5-8-4-11, or, rearrangmg the factors, 2-3-4-5-6-7
-8 10 11. ™

Wilsocn's theorem exp%sses a characteristic property of
primss. For if p JS\\a composite number, then there is a

7

facfm ifatlon \\ \/

we gok

27=1

3

\ P = ab,
where 1 < Q;{'p Then & occurs as a factor in the product
1-2- 3,\“ p - 1, and the congruence

Y 1-2:3- - (p—-1)+1=0 (meda)

lS @cnqsﬂale much less is it possible modulo p.

N S pi is an odd prime, we can write

Y p+1 p~-r_ p—1
=P 3 2

. p+3 p—3_ _»—3
2 T 2 2
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all modulo p. Consequently

PHL PH3 ey gy .. - 2D
5 3 (p—1=({-1) Py 5
and on account of this, Wilson’s congruence tokes the fortn.
-1 — 1\ :\
(—1) 2 (1.2.3 SN Eu.z_m_) 4+ 1 = 0 (mgdp)
or A
p — 1 2 =l \“
(1 2.3 .- -—-—~2—~—> + (1) 2 5’;\? vraod @),
Now we have to distinguish two case'.%‘%\ fp = | {mod 4) or else

p=4n + 1, and p = 3(mod 4) o*r}ef.ée p =40 -+ 3. In the
former case .

www.dbraulibrag

_é}‘g‘jn
(1 2.3 - - - ?L%,fr) + 1 = 0 {mod p).

W
ana
. 3

This means that —{Ns the residue of a square or quadratic
restdue if the moditlus is a prime of the form 4n + 1, a rather
deep property‘sPsuch primes.

If p is of fhe form 4n + 3, then

A\

A CRT YT R A Y
RO CER TR
and”

:"\?;3 1.2.3...?;—15i1(modp).
~O

N

fi

1 {mod p)

There i8 no simple rule which would permit us to decide a
priori which of the two signs + holds in this congruence.
For some primes it is + and for some it is —, but whether the
first or the second case vecurs is not decided hy some simple
property of the prime itself, From quite a hcterogeneous
source Kronecker derived the following interesting rule:
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Subtvact from p sguares of even numbers as far as one ean
go whbout getting negative numbers. Count how many
differinces

p"'zzap_‘isz"&z!

are of the form I\
phitlgl ) t\«\,
whera 7 is a prime not dividing s and ¢ Z 0. If there o "
differences of this form, then N
1-2-3 Cg— = (=1 (modgp):

For example, take p = 127. Then ’x:)\\';

197 ~ 20 = §-41;  120EW = 337
127 — 52 =7+ 13; 127 — 8t = 7,.32 127 — 107 = 3%
. TR T'aul—bl -ary.org.in )
In this example p = 1, corresportdmg to a mgﬁ Snderlined

o

equation; consequcntly ,;‘ “

1-2-3 - {\ 83 = —1 (mod 127).

\Bsmrc:ses and Problems

1. Cant 2 - D -t (p — 1) + 1, which is divisible by the odd prime
7, be & power of t’hls»pnme?
. \’) Ans. Thiscan heonly forp = Band p = 5.

2. For a,p,?ﬂﬁe p =1 {mod 4}

"/ o\
\ (1.2.3...3’_}_) +1

2

™
.s

-

W\l)S hlws-nble by p. Can this number be & power of »?
Ans. Ounly for p = 5.

3. Bhow that for p a primcand 0 <s <p
s ~ ip — ! + (=1 =0 (mod p).

4. Show that
On, = CpMCy" (mod p)
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where i, g1 and ny, ¥ are the respective quotients an:. remninders in the
division of m ahd = by a prime . The sytubal €7, wheo i neeurs, means
always 1. Apply this to m = 1,000, n = 500, p = 1.

Ansg, 0 1 {mod 13).

B. Prove that the coefficients ¢, ¢s, €35, . . . of i nsion A
H - -1
]_'_i-m_ﬁt_.___._.tﬂ_ =14ecr Fc.t 0 - .’r\i\‘
(1 — z}rt N\
O

are integers divisible by p if p is prime. AN

6. I r,re, . .., 7pand s, 85, . . ., 85 aT0 Lo 1y \ }u systems of
residues medule prime p, then p numbers s, re \{\V ., rysp do not
represent a complete system of residues.

7. Prove Wilson’s theorem by using the \&Lll%t(}“ nohenlity
(p — 11 — Cl_l(p — 2y Cz_l(P )€¢ -
+ (- 1);:—3014—.%‘ =1.2-2---(p- 1).
This identity itself result, fro t.he fa bat the uth d.i. once of any
p(ﬂ,ylfl()l’nla.l(:ofcl(egl‘é"f’)”%ct"i"ﬂﬁ:l (ﬁngwefﬁ( sient 114 ¢ -'3 ‘3B
provided the merement of the ﬂ.rgnment is =1,
<
¢, <\
N
P\
s\,
NGO
m\,/
t\bt
Y
.le
R\




APPENDIX
: N

ON MAGIC SQUARES
_ D))

1. D:efinition of Magic Squares. By a magic square,we °
meat: o square divided into n* cells in which numbers from”1
to n* arc placed in such a manmner that sums of t-hc’nfum‘bers
in at! horizontal and vertical rows, as well as bothidiagonals,
are th: same. The common value of these sumsis’

wn’ +1) o\
2 Qg
X
sinee the sum of all numbers 1, 2, . . {)"n? amounts to
n? (;%*’2‘”_‘]"_’511&; tatilibrary org.in
Tor sxample, the squares  «3%
AN\ 1114 125] 4
8 1 %\\ . 12769
3. &7 § . 1n|10]5
(Y9 (| 2 13213118

are m&-g’i‘}éﬁua-res of 9 and 16 cells. Since remote times magic
Squati® have been known in China and India, but it seems
*:hét)’their knowledge was not widespread in Europe until the

teenth century. Later men such as Fermat and Euler
did not, deem it below their dignity to spend time on methods
for coustructing such squares. Despite innumerable eﬁorts
of men of science and amateurs, we do not possess n}ethm%s
for the construction of all possible magic squares, nor 1s their

number known except for n = 3 and » = 4. But there are
159
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aumerous particular methods for their constructivi. and one
of them, based on congruence properties of by we shall
endeavor to explain in the appendix. It affued- w good
illustration -of rather abstract principles laid dowi in this
chapter and may help to make these prineiples more o ractive
to beginners. .
2. Auxiliary Squares. Every number k from 1 1o f et gy
represented in & unique manner in the form . O
E=mnr+s RO
where r coineides with one of the numbers 0, 1, 2,»~\\ oon—1
and s with one of the numbers 1, 2, . . D3 Wo shall

call r and s, respectively, the first and the spdofid compe:int of
k. If we take the first and the second.foMponents ol «ll the
nwwbers in & magic square and place\them in the same cells,
we get two auxiliary ‘ﬂqﬁﬁpﬁqigﬁ?fzﬁrgf‘%r instance, auxiliary

squares corresponding to thelMagic square of nine cells
shown ahove are

2 o] 1] 2113

N(l’ ?1 s 21
\..:L;l 2 ol L s | 2
\ I -

Similarly, siixiliary squeres to the above-shown magic square
of IQQ&Hs are

{
e

O E 8 3h[0—.| \1 z |3 44!

Lz L)1e L4 32 1‘
\122 1 k-;_a 2 1]
La 0‘01_3__ ll 2 |3 4!
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We notice in these examples that the auxiliary squares are
also muagic; that is, they have constant sums in all horizontal
and verileal rows and in both diagonals. But it is not neces-
sarily #o for any magic square. Conversely, by constructing
auxilinyy magie squarcs, one made up of numbers 0, 1, 2,
. ;7 — 1 and another of numbers 1,2, 3, . . . , n, we eap

make « magic square of 7 cells by placing in each cell ghe)
product by n of the number oceupying the same cell in the first
auxilisry square and adding the number oceupying the same
cell iy the second auxiliary square, provided thai the @b humbers
this odtained are different.  Beeauss, if differcnt) Th}sa numbera
will bhe 1, 2, .. ., n%; moreover, sums in thé\horizontal and
verileal rows as well as in the two diaggri.al@'will be equal if
this iz ~0 in the auxiliary squares, o\

As 1o the construetion of ayxiliary migic squares, we musf
distizguish three cases acc.o'f(ﬁ:?g »ztzf.ggt]';ﬁzi oddy SF&iRisible by
4, or ouly divisible by 2, the Igsf;';biase heing the hardest.

3. Magic Squares for O(ld"?&l Let us denote by symbols
(0, (1), (2), . .., (n — &) the numbers 0,1,2, . . . ,n —1
take:t in a certain ordepde be specified later. The symbol (k),
for an arhitrary intéger%, will then be defined by the require-
raent () = (k) iNg' = k (mod n). Horizontal rows of cells
from the top déwH will be denoted by 0, 1, 2, . . ., n— L
Similarly, vertital colurans of cells from left to right will be
marked bythe same numbers. Then each cell will be charac-
terized g two integers ¢ and 7, corresponding to the row and
columﬁ to which the cell belongs. To form the first auxi]iar‘y
sqdare we fill the cell (¢,7) with ({ + j); then the square will

b magic in rows and columns. In fact, since 4+ j _for a
fixed ¢ and variable j runs over a complete system of residues
mod n, the cells of all horizontal rows will be filled with t-t.le
numhbers (0), (1), (2j, ..., (m—1), and the saime will
hold for the verticzl columns. On the descending diagonal
¢ = j, so that its cells will be filled with the numbers (0, (2),
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4, ..., @n—2), which coincide save for order with
(), (1), (2, . . . {n— 1), since for an odd n the nunibers
0,2 4,...,2n—2form a complete systemn of resicdies.

On the ascending diagonal ¢ +j = n — 1, and its cells will
all contain the saroe number (n — 1). To make this ding wal z
magie, we must subject the symbol (n — 1) to the conditici,

£ ™\

that is, we must take (n — 1) = n—2— L As {(i:‘bh(; ottt

symbols, they may be identified with the reémgining numisrs
in any order. Under such circumstanc(;s\\t,he first auxiliary
square will be magic. For example, {orsb/= 5 we may tale

(0) =4, (1) = 3w Braalihiapy BB 1, (4) = 2.
Then the first auxiliary square ji‘gs’: )

sl a0 1]
~3’\0 1] 210 4

Yolrlalals

it2l4a13]0

P,
I 214 (38le] 1
:"\s.

_ ill&ébnstruct-ion of the second anxiliary square is very simi-

lg%:’:, We denote by symbols <0>, <i>, ..., <n— 1>

~ :}he numbers 1, 2, . . ., n taken in a certain order, and to
N/ define the symbol <k> for an arbitravy integer k we et
forth the requirement <Ek'> = <k> i ¥ =k (mod n).
}_Iow we place in eell (,7) the number <¢ — j>. Then,
singe ¢ — j for a fixed j and variable i, and also for a fixed ¢

and variable §, runs over a complote system of residues mod =,

the square will be magic in rows and columns. The ascending
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diagonsi is filled with numbers < 2¢ 4- 1> which, save for
order, coincide with <0>, <1>, ..., <n»n —1>; con-
sequent’s it will be magic also.  But all cells of the descending
dingoniui will be filled with <0>. To make it magie the
conditisn ~
n<0> =1+2+3+ - =10

.;\‘
must be fulfilled, so that we must take <0> :\n—;—l

As {ov the other Symbols they may be 1d9ntlﬁed with the
remaining numbers in any order. If for %, ﬂ\ﬁwe take

<n =38, <l>=1  <2>=4 <3>=2

AN
<4> = 5,7/
iqa \ '
the second auxiliary square ‘WI\%.'Q(\E; dbraulibrary.org. in
3|5 a4l

1% |5 2 (4

'l 1| 3|5 2

\\ 2l al1la)s
51249413
N\
Comh’\dng two auxiliary squares as explained above we geb
it smm ‘whose cell (7,7) is occupied by
O n(i + j)y + <i = j>.

S
e

”\ At remains to show that the mumbers in different cells are
different. If cells (7,7) and (¢',7') contain the same number,
then

n(@ ) A <il = > = (i D <>
and .
@+ §) =G4y, <@ -§> =i
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that is,
Pt i=i+g ¢ —j=i—j7(modn),
whence
¢ —) =0, 2(j' —j) =0 (modn)
or

i —i=0, § —j=0(modn). O

This is possible only if ¢ = ©,7" = j. Combining the auqm”ary
sguares for n = 5, we get the magie square of 25 cclls

1]

221212 9|1 v

8|3 |10712 )24

4 16 13125 .J\Tl

N

7014|2485

Ne/

N

it A ?%ﬂiFrhl'P{.sr;;,in

TN

It is clear that by this ‘method a great number of magie
squarcs for the same(h may be abtained. Also, the way of
filling cells of auxiliary squares can be greatly gemcralized.
This, huwever,‘i&e can not diseuss here.

4. Magic Squares for n Divisible by 4. In case n = 4m,
we may fillel (2, 7) of the first auxiliary square with (2 + 2mg).
Then t}u,\squaro will be magic in columns and also magic in
boti\dmgonals Tor on the descending diagonal 7 = j and
the'}lumbers {2m - 1) for variable ¢ form a complete system

:..\'o,f residues mod 4m because 2m + 1 is relatively prime to 4m.
i\; ~On the ascending diagonal j = 4m — 1 — ¢, and the numbers
—(2m — 1) + 2m{4m — 1) form a complete system of
resid.ues mod. 4m for £ variable. As to the rows, they will be
magie on certain conditions. The ¢th row contains only
symbols (4) and (Z + 2m), each repeated 2m times. In
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order to inake this row magie, the following condition must be
fulfilled.
2m[() -+ (4 2} = (0) + (1) + - -+ (m - 1)
= 2m(dm — 1),
whenee
@)+ G+ 2m) =4m - 1. N\

We muy identify (0} with any of the numbers 0, 1, 2, A\
4m — 1; then (2m) will be detcrmined. Again (1) se8m “be
identific rl with any of the remaining numbers and §2m + 1}
will be determined, and so on.

The «ell (2,7) of the second auxliary square‘we may fill
with «<22mé + j>. The square will be magle Af the symbols
<j> rutisfy the condition N\ -

<j> + <j-]—2m> ==\4m+1

By conibining the two auxiliary uluﬂreb, we get 4 square whaose
cell 72,7} containg VW\'(W dbraulibrary. org.in
dm (i + 2mj) + <2ma + J>.
Two vells (4,7) and (1\\3’) will contain different numbers, for
otherwize we must ha}e
.z",-i— 2mj’ = ¢ 4 2mj (mod 4m)
QO2mi’ + j = 2mi + § (zod dm)
or 4 »,
Y~ i+ 2m(G — ) = 0 (mod 4m)
N\ 2m(i’ — 4) + j' — j = 0 (mod 4m),
\&hurwe '
<\(4m — 1}¢" — i) = 0, f4m? — 17 — §) = 0 (mod 4m);
but 4m? — 1 and 4dm are relatively prime, and consequently
i — =0, § — 7 =0 {(mod 4m);

that is, ¢ = 4, j/ = 4.
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As an example, let us construct by this method t" magic
square of 16 cells. We may take (0) = 0, (2) =3, {1) = 2,
(3) = 1. The resulting first auxiliary square will be

ol 3 0[3 O
-
zl1 2] oA
AN
slofalo
<N

112)1]2 \\~
I we take <0> =1, <2> =4, <I2=3, <8> =2,
the second auxiliary square willbe 7 N

A0

SRR

»a

FRIPN

RN 2 1.
: www.MlaLJirgl“ Org.in
AMNela2l1] 2
WO

L 2) ias ' .
and, by combi both auxiliary squares, we get the following
megic square’ef 16 cells:

AN/ 117 T

::\"'
1Bls3lis]2
P N _
<\' o 8lwlsln

B. Magic Squares for » Divisible by 2 Only. The con-
struction of magie squares in case n = 2m and m is an odd

number ig not so simple as in the two preceding cages. We

begin by filling cell (¢,7) of the two auxiliary squares with the
numbers _
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’: i+ § + m[ﬁ]) it + m[%]>

and chocae the symbols (B) and <k> so that

N
® +im+k)=2n-1 k=012 ...,m—1,
<kr>+ <m+k> =2m+1, ’\\
k=0,1,23 ...,m~1 A

If the nzmabers occupying a certain cell in the first an‘&second
auxiliary squares are (a) and <b>>, the double S}"g:rbol (ab) 13
defined by )
{ab) = nfa) + <b>.

With cur method of filling cells of aufiliary squares, all n?
double symbols will be different.NT'o* prove this, suppose
that ths double symbols correspondmg to cells (7,7) and
(¢',§7) arc identical. This requires the fulfillment of the two
congrusiices N

S it - Em[“’%]”ib%“[ﬁ-h e BH)
iz’ — 5) 7\3\}:_ j m[%] - m[%] (mod 2m).

For the modL{}L}s"m we have
ot — i =0, j —j=0(modm),

y 4

X’
and so o\
A\ i — 1§ = me j'—j = rmm,
whete,
',,\‘w:' € = 0, 1, —‘1, n=201, -1

<\;C6rrespandmgiy,

]-e+fe) [2]-0+[4]

and, on substituting these expressions into the original con-
gruences mod 2m and dividing both sides and modulus by m,
we get
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et (m+ 1)y =0 {m + 1) + 5 = 0 {mod 2).
But m is an odd number; so ¢ = 0,y = 0 {(mod 2), and that is
possible only for e = 0, y = 0; that is, ¢/ = ¢, §/ = 7. Thus
our statement is proved. O
The first auxiliary square, as can easily be seen, is magic'in
rows and diagonals, but not in columns. Simila 1;};..\ the
second square is magic in columns snd diagonals\but not in
rows. In ease n = 6, the auxiliary squares arfs“.‘w‘.
(A) ) ":‘:‘\ N/

© (1) @) () @) ()

(3) &) (5) () QI

© (1) @) @ ()

0 (1) @ @»4) (3)

(3) @) @N0) (1) @)

©) () B @ ©)

ww:.«ﬁﬁi‘aul{%ﬂl‘)’-org-m

<0> L8> <0> <0> <3> <0>
IS <I> <> <> 1>

2> B> <2> <2> <5> <2>
OR8> <0> <3> <3> <0> <3>
o) CA> 1> <> <> 1> <4>
A <E> 2> B> <B> <2> <B>

R the corresponding square of double symbols is
~O (C)

A" (00) (13) (20) (30) (43) (50)
(31) (44) (51) (01) (14) 21)
(02) (15) (22) (32) (45) (52)
03) (o) (23) (33) (40) (53)
(34) (41) (54) (04) (11) (24)
05 (12) (25) (35) {42} (55).
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It is mugic in diagonals but not in rows and columns, Now
we transform square (4} by placing columns 4, 5, 6 in the
reverse ovder, 8, &, 4; square (B) iz similarly transformed by
placing rows 4, 5, 6 in the reverse order, 6, 5, 4. The trans-
formed squares are \

<0>
<1l>
<2
<H>
<4>
<3>

(4%) R
1) @ &) @ B
@ @6 @uo O
© 1) @ 6 @B &
© ® @ & ® 0
3) (&) (5) (2 (1) O
© @@ 6 @8

(B) ¢
<3> <0> 8> <3> <0>
<4> <1z 1> <4> <1>
<H> <233W3:Eb§§l%ra orgm
<2> 5> <b> <2> >
<IANVKA> <4> <1> <4>
§Q> <3> <8> <0> <3>.

Notice that both of their disgonals consist of the numbers
0), (1), 2@, @, (5), and <0>, <i>, <2>, <3>,
<4>, <8%7 The square () undergoes the change which
amount$._to placing columns 4, 5, 6 and rows 4, 5, 6 m the
l‘er‘l‘S@\order, 6, 5,4 The tra.nsformed square s

"\“
o\

(")

(00) (13) (20) (50) (43) (30)

(31) (44) (51) (21) (14) (O1)
(02) (15) (22) (52) (45) (82)
(05) (12) (25) (55) (42) (35)
(34) (41) (54) (24) (21) (04)
(03) (10) (23) (53) (40) (33).
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I c-onfa,ins the same 36 double symbels as (') and remains
wmagic in both diagonals. Notice that the series «f second
components in the first row

6 3 00 3 0 ~
and the first, components in the first column A
6 3 00 3 0 AN

are symmetrical about their middle. This is a vepy drfiportant
fact which allows a further transformation of {€7), as follows:
in the two middle columns in the first row &vhang“ and
5; in columns 2 and 5 of the first row<dzgchange 1 and 4.
Fxchange also 2 and 5, 1 and 4, in the\\ﬁrst column. Such
exchanges do not alter symbols of the\ﬁrst row and column in

their fotality snd do not affect the d;agonais The rz :lting
square {(C7) N

.,:c{e’”)
(00 (3330 Ry €15 (30)
(34) (44) (51) (21) (14) (01)
08D05) (22) (52) (45) (32)
L12) (12) (25) (55) (42) (35)
' '“’(31) (41) (54) (24) (A1) (04)
N 03) (10) (28) (53) (40) (33)
is now\n}agic in its diagonals and all rows and columns except
0%1 8, and columns 1, 6. In fact, take for example the
second column. The ﬁrst components of its symbols are

..\’.

"\ ¥ 441141

N/ that; )s, it contains 4 and 1 each three times, while the second
components are six different nambers:

3,4,5 2,1, 0

By the choice of symbals, therefore, the second eolumn is

magic and, for the same reason, that is also true of columns
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3, 4, 5. Tske again, say, the third row. The socond eom-
ponents of i~ symbols are

5! 53 2} 2! 5} 2!

g0 that 5 1.1 2 each occurs three times, while the first com-+ N
ponents are : A
01,25 4,3. A
Consequently the third rew, and similarly other row,sj{xséépt
1 and 6, are magie. ) AN 2

{(C"") now we take only the twg}nfd&le TOWs

N/

In the scuare
and colurnns as shown:

(50) (20) 3
(51) (21) N
(05) (15) (22) (562) (%5} (32)
(02) (12) (25) (58) (42) (35)
(54).¢24)
(232’ (é;?ln)w.dbraulibl‘arylm'g.in
Then we ex~hange 0 and& In the third line and column. This
v o
Y (83) (20)
(51) (21)
2B5) (15) (22) (52) (45) (©2)
X7 ¢ ¢
NO7 02) 12) (25) (55) (42) (35)
O (54) (2%
AN L
~© (20) (63),
N t_1
but here we get four pairs of identical symbols (02), (20}, (35),
(33), which troublesome cireumstance disappears after two
double exchanges of 2 and 5 as indicated in the diagram.
The resulting middle rows and columns, when completed by
other symhols left untouched, finally produce & square
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(00) (43) (53) (20) (13) (30)
(34) {44) (51) (21) (14) (01}
(35) (15) (22) (52) (42) (95)
(02) (12) (25) (B5) (45) {32)
(31) (41) (24) (54) (11) (04) N\

(03) (10) (50) (23) (40) (33) O\

. . .. . 22N\
which is magic in all rows, columns, and dingefalss  This
method, though explained for 8 particular examph, i+ general,
as anyone can convinee himself after a cagefgh sxnmination

of the whole procedure. O
To produce actually 2 magie square of\36 cells, 1T us take
- {or example .*'.\\"

R

®=0 G)=5 <O»=1 <3 =6
WM=1 @=4  U>=2 <t =05
2 =2 (5) =3, V<2> =3, <5> =4

Then, evaluati&gw@ﬁﬁn&ﬂanthegduuble symhols, we geb
the following magic{square:
PN

1 ojuinin|a
A, B2 |22

AN/
P 4 a2 er] 4

i”\'q v

N 31911622 )|2}3
3 212 ]17(28! 815
61711918 l 25 3%




CHAPTER VII A o

(N
CCMGRUENCES WITH ONE UNKNOWN. O

LAGRANGE’S THEOQREM AND ITS APPLICATIONS

1. Congruences in General. Let ,-:\\'
fla} = pea™ + pio~t 4 - - HP.
9.\

be a polynumial with integer coefficientg’and m an integer con-
sidered a5 a modulus. To solve a num\encal CONETUence

port 4 part 8 = 0 mod m)

ohe 18 required to find all mtegggs w%ﬁj by JFhen substituted for
&, satisis 1bis congrue nce., Such infegers are e chlféd the roots

of the congruence. ..‘\

Sinee
\f(a’) = f(a) (mod m)

when
O \

x\"
it is clegd Nla‘r the congruence, being satisfied by one number,
will he “Fntisfied by all numbers of the class to which it belongs
moditlo 7. The class of numbers modulo m is completely -
~eharacterized by one of its members; consequently, for a
omplete solution of the congruence, it suffices to exh-ibit
roots belonging to different classes; that is, roots distinct
moduto m. When speaking of the number of roots we, therff‘-
fore, always mean the number of distinct roots. Theoreti-
cally all the distinet solutions of & copgruence
flx) = 0 (mod m)
173

&’ = a (mod m),
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can be found by substituting for  members of : complete
system of residues, for instance, the numbers 0, » 2, . . .,
m — 1, and ascertaining which of the numhbers

70y, f1), « o . flm — 1) QO
are divisible by m. If none of these numbers is di\ri:f;igl'd\b}.m,

then the congruence is impossible and has no rogs) When
the modulus is small, this procedure may be uspd"f}g prractice.

Congruences, like equations, are classified agtordin. to their
degree. The congruence O

paz” + purnt 4 - pa s (mod )

is of degree x if p, is not divisible'bim; otherwise it is cquiva-
lent to a congruence of a lower degree. Thus

323 — 62® +. 58— 3 = 0 (mod 7)
is & congruence of%ﬁéftﬁ}'auégjéféa'%ﬁiig
621 9822 + 7z ~ 1 = 0 (mod 6)

is equivalent, tQ\the following second-degree congruence:

LOF —82 4Tz — 120 (mod 6).
Wle 1. Congider the congrucnce
O

O By trial we find

J@) = 2(z + 1)2z +1) = 0 (mod 6).

N fQy =0, JAy=6, f2) =30, f(3) =84 f(4) = 180,
F(5) = 330, '

and since all these numbers are divigible by 6, we conclude that the pro-
posed congruence has six solutions:

z =0, r=], :,E‘=—2, =3

il

+ ]

4, 2 =45 (mod 6).
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In other word- )] integers satisfy this congrucnee, and

zlz 4+ 13(2x + 1)
6

is an integer fv all integral =. O
Example 4. Lot us try to find sclutions, if any, of the congruence, »
FaY)
Fix) = 3w’ — 6x? + 52 — 3 =0 (mod 7). \"}\ “

By substitulicg @ =0, +1, +2, 13, which form a eompleiQ*ayatemof
residaes modd _? we find s
JO) = -3, fay = 1, 1@ =7 \zfc:n =39

fi-"1=-17, f(-2) = —61, (- 31 =~ —153.
o™
Hence the consruence has one root '\'{.

z =2 (mod TINV

No/

Exampte 5. To solve the congruergdé’~
flz) = a* — 2~—-“0 (mod 18}
e, Yy SEEeulPragtorg R, of the

we substifuw: 2 =0, £1, -_f-2 4'3 +4, +
numbers
F0) = -2, \ =1, f+D =41, HxI)=1

_f(+-.,- = 7, _f(+5) = -1 f{16) =7 (mod 13}

ig divisible by .}‘%j,he congruence is impossible.

y '\s o/ .
A\ Exercises

i SOI\\Q ti:e congruence
Q) ~ 3 =0 (mod 13).

£ 31 . Impaossible.
Q Solve the congruence

922 — 8¢ -+ 9 = 0 (med 11).

Ans. £ = 2, 5 (inod 11).
3. Solve the congruence

ol 222 + 4 = 0 (mod 7).

Ans. o= 1, +2 (mod 7).
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2. Congruences of the First Degree. It is nmural to start
with congruences of the first degree. Sueh congiences ean
always be taken in the form

O\
az = b {mod m),

s\,
and we can distinguish two cases aceording a~ « cmf{ piare
relatively prime or not. If a and m are velatively X e, then
the numbers A

0,a 2, ...,(m—a L

form a complete system of residues modulgwn,  Cincequently
one and only one of them iz of the séme class ax L. If this
number 1§ axy, then xy is the unlque}olutum of the proposed
congruence mad m and all other Toots of the same are com-
gruent z, mod m. R

If a and m are not rela;ﬁvely prime, lef d be their g.e. d.

Then the propose%gpmﬂdmmpmsible if b is not divisible
by d; otherwiss it is \e.ntlrely equivalent to the congrucuce

\\ GEEd( Odd>

in which aﬁf and m/d gre relatively prime numbers. Hence
this (-un‘ggmence has a unique solution z, modulo m/d; that is,
a‘nl\l{&mots as well as the roots of the congruence

i ,f:”. ' ax = b (mod )
) are
C \

33:150*}*%15

where ¢ is an arbitrary integer. Taking ¢ = 0, .1, 2, ...
d — 1, we get exactly d distinet modulo m roots

m
$03$0+'&‘: xﬂ"l-%; LI !$D+(d_1)ﬁ;
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for two valuc: of ¢ congruent modulo d lead to two values of 2
congruent mud me, while the exhibited d numbers belong to
different clusses mod m. We conelude, therefore, that the
congruence i the first degree

ar = b {mod m) -
\
iy possible il and only if d = (g,m) divides b, and In thl& eake
it has exmitiy 4 distinet solutions mod m.

3. Methods for Solving Congruences of the Fn'st Degree
A congrucesiee of the first degree is equwaleﬂﬁi’&‘hhe indeter-
minate egintion

ar — my = b. \w

The meothiod of solvmg such equahom\m ras explained in Secs.
5and 6, Chap. ITII.  The redue h(m of the congruence to the
indeterminate equation affords i ‘practice the most expeditious
method of solution, especiall §f a and m are large numbers.
There are two other methedewthdﬁﬁ%hbﬂ@ﬁgl ofR ifntirely
different. principles. ‘,&e can suppose that ¢ and m are rela-
tively prime numbe‘ﬂ) and also we can take & = 1. For,
if wpis a ‘01111:1011 b.bfhe congruence

aze = 1 (tnod m)},
N \

then Eu". 0\ any residue of it will be 2 solutwn of the con-
gruenge

's’\ ar = b (mod m).
NOW, since a and m are relatively prime, by Euler’s theorem
\/ a*t™ = 1 (mod m)
or
aae@—1 =1 (mi)d m),
g0 that

a® {my—1

or any residue of this number can be taken for .
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Example. Solve the congruence

352 = 14 (mod 182).

First we ascertain whether this congruenee is possible. 'io this end we
find d = (35,182) = 7 and, since 14 is divisible by 7, the v ruence §ag
seven solutions. To find them, we must solve the congrie e ) ,\«\.
<\
5z = 2 (mod 26). O
One root of the congruence is t 3

7 .'\'
5. BPU0-t = 251 NV
N
or any of its residues mod 26, Now :.\\.}
11 =8 + 23N

and ANV

=5 5=l FAST, 50 =1 (mod ¥
1l = 3. _.1;{'1'25? —5 (mod 26)
2 511 =5~10 {(mod 26),
gbraulibrary.org.in
$0 that ope root of th “ér(\;;zgq:ulénlée v

\
N Bz = 2 (mod 26)

52y = —10. Qo;ﬁé;uenﬂy the seven roois of the congruency

L >
N/

355 = 14 (mod 182)

are X \/
\\“ ~10, 16, 42, 68, —88, —62, —36,
or,.‘q\'wé’ prefer positive numbers,
W\
N\ 172, 16, 43, 68, 94, 120, 146.

N
a\;

N

The second of the two above-mentioned methods is based
upon the following considerations. Numbers a, 20, 33, . + - s
(m ~ 1)a when divided by m leave quotients qi, gz, -
gm—1 and remainders »,, ¥z,
coincide with 1, 2, .
m — 1 we have

L ]
.+ ., Tm-t which, save for order,
.,m—1. Thugforez=1,2 .. .;

0= mg; + 7
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and, squariz both sides,

ita? = r{ + 2mga: + gim®

or
122 = r? + 2mygr; (mod m#),
On the othar hand, ‘ ' {C\
rae = sag; (mod m) ~\ \“}
mry: = miag; (mod m?), :s} R
and so &V
i2a? = r? + 2mady; (mod mi’g\
Bumming fnese congruences for ¢ = 1, .2. .., m—1 and
rememberiny that v1, rs, . « . , Te1 ml’g\lmde in their totality
with 1,2, ., m —~ 1, we get O
mim — 1)(Pm — 1), m(m -n:l)(2m — 1)
u‘:’ W\.ﬁv dbrauhbwry org.in
¢ {\ + 2m2éq; {mod m?),
. & =1
whenee Ko .
mim — 1)(2N ’1)0,2 = m(m ~ 1)(2m ~- 1)
x:\ m—1I :
o) + 12ma Y, ig: (mod m?),
Q 2

N
GfiidiVidirlg hoth sides and the modulus by m,
\/ m=1

m — 1)(2m ~1a? = (m — 1)2m — 1)+ 120 2 4¢: (mod m),

Ci=1
or elge

m—1
a(a — 12 zfiq,) = 1 (mod m}.

£l
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This shows that

m—1
z=a— 127 ig: (mod m)
i=l
satisfies the congruence
ar =1 (mod m). L\
Since o\
= 1_:9 r "’.}& )
& m “: ’

we have 8 more explicit expression for «

m—1
Img - 122:’[*‘_“]
.

fwm]

N

The sum on the right-hand side\can be transformed into a
(ar more convenient expression, as we shall show in the next

section. www.dbraulibrary.org.in
4 Contiguation. The sitnplest way to transform Lo sum
A
\‘.l 21 E
R m
O V=1

in haned :01} ‘ﬁ@mﬂtﬁcal considerations. Consider the ree-
tangie !??H!C'wllh 0A =m, OC = a, and take its horizontal
‘"f\\"@’{'“l sides for coordinate axes as shown in the diagram.
W\ Y

NS

< B

[¥] A X

‘o i H a

f\:n‘t: with tegral coordinates are called “lattice points.”
fibute to 8 iattice point (i,7) the weight 7 and scek the
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combines! veight of all the lattice points in the triangle QA B
excluding ides DA and AB. These lattice pointy are located
or the s v =1L, 2=2,. .., 2=m—1 To find out
how muny lattice points are located on the line 7 = £, We

notice thur the equation of OB is O
N, ¢
=2 ¢(\A
Yy = ;éx. "\

|
N

~

Cousequenily on x = § there are as many lattice poibta, as
there are infegers 1, 2, 3, . . . not exceeding ai/m ({'g.“

g
m 'xt’\\"

Inttice puints each of weight . The weight due to all lattice
peints an the line ¢ = 1 heing ::;"

[a]os®
1 =
Lniiw \-r.dbl'aulibrary,org,in
the combined weight of s,l'l{att‘,i&ce points in the triangle OA B s
"‘\

AP

N\ E,-[E‘].
O ; m
Py ad tm]

Now we g:;ili;?c;mput.e the same weight in snother manner,
considering (fhat all latiice points under consideration are
locuteduirthe lines y = 1,2, ...,a— 1tothe right of OB.
{n y:.'-'\»a. inclnding OC but excluding 4 B, there are m lattice
;go'{{m\-' of weights

@ ) 0,1,2,...,m—1

ny= h, including OC but to the left of OB, there are

2]
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lattice points of weights

0,12 ..., [fn—"—‘]
. &

Consequently, the sum of weights of the latticr pointson

# = h within OAB is p
9 \

0+1+2+---+(m—1)—(o+1+2+-3

[z g

and the sum of weights of all lattice pq'{qﬁs in 047! s

(a—l)n;(m—l) ;*‘{ ] 22[?.,3J

N Nt
Now o
. W dbrauilﬁl ary.org.in
5~ a-1 a—1
E[ |- E[’i@; 9= S[m - 2]
\v @ «
k=1 "é‘{\ h=1
a—1
Q" =(a—1)(m—1)—}:[%}‘]}
o\ A=1
whelgme
O [ mh
¢ EI:’E%— = -(i-___l.)in_-_—l)-

eonsequently the above ax
points in OAR simplifies to

@=Dm-Dem-1) 1~Q[m]?
A Sar
k=1

pression for the weight of all lattice
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But another expression for the same weight is
m—1
4 ai
S@ bl
m o
i=1 . N
and thns we arrive at the desired transformation L)\
~\\

m—1  {

S{z]-eovm pen-y ;% [f%q

 }
Multiplying both sides by 12 and dropping\multiples of m,

we et ::\\J
m—1 ) a—1 ~~3] 'g
Jat| _ o Kmh
1223[;}—1] =30 —3 62[ ” ] {mod m).
i=1 ‘».&‘.:1
o3

But the solution of the congruelice
Wi dhrau library.org.in

az = I’ (mod m)

o \
ag given in Sce. 3 was O

and it cagrxi;i@w be put inte the more convenient form

,\'\\“' a—1 2
=~ mh
i:\:;: 1=3-2a-+ 62 [E] (mod m).
r=1

For small values of @, even if m is large, this congruence can
be conveniently used for solving congruences of the first degree.

Exzample, Solve the congruence

5¢ = 1 {mod 89).
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Here we have g = 5, m = 69; correspondingly
@i&
a
E{l’ 2
@ N

i

13, 27, 41, 55 (mod 69)

|1

31, 89, 25, —11 (mod 69)

28 A
and P N
-1 B 12
2[”’_] = 15 (mod 69), N
p=1t @ AN
whence ~\

=3 — 10 + 90 = 14 (mod 693\

This interesting solution is taken from a little-k:n@'fl paper by Veronol,
{o which we shall have necasion to refer latcr,.,'\ & B

(+. Voronoi (1866-1908), & very prominent Rusgiap mathemaiiean,
published but few papers, but all were of fundamental importanec. They
deal with the geperalization of contiftned fraetions, asymptotic cvaln-
ation of arithmetical functions, f}r{ﬂ:’.’tﬁe veduction theory of quacdiatic
forms in several variablgs, w.db’r'é,uljbl‘ary.m'g-m

E: el:cises and Problems

1. Solve the mngrueniw’513x = —17 (mod 1,163).
L\ Ans. z = 968 (mod 1,163).
2. Solve 1he cgnﬁmenee 6862 = 121 (mod 737).
Ans.z = 18, 807147, 214, 281, 348, 415, 482, 549, 616, 683 (inod 737}
3. Solve t{e"ﬁongruence (n -+ 132z =1 (mod (2n + 1)%.
Ans, (8 ~ 4(2n -+ 1)2n + 3) + 4(2n + 1)*@n + 3)*
A/ (mod (2n + 1)%)
:1;,‘1&\ anclent problem, still enjoying wide popularity, requires one o
ditide equally wine contained in an 8-gal. vessel by means of two ermpty
m: vessels of 5 anid 3 gal, capacity. It can be generalized as follows, Of
\ J three vessels A, B, €, whose capacities are @ > b > ¢, the first is full of
wine and the two others are empty. Suppoesing that & and care relatively
prime numbers and a gven, divide the wine into equal parts, using vesuels

A, B, € and no other measute. Show thaf the problem slways can be
golvedif ¢ 5 2b +2cund a2 b + ¢ — 2.

5. An Important System of Congruences. Very often it is
necessary fo find integers which belong to preassigned classes
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for the moduli «, b, ¢, . . ., I, respectively. The problem
amounts to the solution of the simultancous congruences

z = a (mod a), x = 3 (mod b), C ey
2 = x {mod k), z = A (mod I}, (4)
All numbers, if there are any, satisfying these congruences
belong to the same class for the modulus x, which is the lesst)y

commen multiple of @, b, ¢, . . . , L In fact, let x be‘"bne
golution and x; any other. Then ;’w
ro= (mod @), 21 =2, mod B), . . ., ‘\m‘* (mod {)

which, by Sce. 2, Chap. VI, amounts to a singleeongruence

2y = 2o (mod ). /N

It is not always possible fo satisfy t’iﬁ simuttaneous con-
gruences (A), though the necessary, éohdition of possibility is
“easy o find.  If the same numb(zr » satisfies two congruences

z = « (mod a),,ww\;pﬁ,gmgary)brg in
these congruenees will h[>1d~modulo (a,b), denoting, us usual, by
this symbel the g.e.d. o£\sa and . But then we maust have
a\l 8 = 0 (mod (a,b)).

Considering in the same manner other pairs of congruences,
we come to th? ‘canclusion that for the possibility of con-
gruences (;@'\t is necessary that

A'%“: a—fa—7v ...,x— A
N B—v ...,8=2
'S X
)
\1‘; Kk — A
should be divisible regpectively by
{0,b), (a,e), . . ., (&l

(bsc): - ,(b,l)

N\
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This necessary eondition is at the same time suilicient. To
prove this, we shall use the methed of induction.  Consider
first two congruences

r = a (mod a), z = f# (mod b). &N\
The first is satisfied by Oy
r=a+d, O
and the second will be satisfied if the integer ¢ is ,\-;4,{-[12’}_\“.1 that
. m'\'\.

W

at = 8 — a (mod b).

Since, by hypothesis, § — & is divisilgl@hﬁ& (a,b), {his con-
gruence is possible and the statement” iz proved jor two
congruences., If there are three coﬁgrﬂences

v=afmoda), o=p WD), @ =y (molo,
the first two can be@aﬁsﬂ‘@iﬁihh@mﬂ%ﬁeneral way by
i "{x = z¢ + ¥,

where ©p i a pa\ﬁ?@tfar solution and » denotes the lLem. of
a and b. To gatisfy the third congruence, £ must satis(y the
congruence (0,

AW
AN vi = v — 2y (mod ¢),

and @:}E\hsp s_how that this is possible; that is, that the g.c.d.
of ;'\Bnd ¢ divides ¥ — zy. To this end let

”\’\, ' 0 == P1=tpysap ® . poes
\ b= pn_’e"pg - - - pf“
f o= pl“fl'pg‘i‘kps'}‘a e . psTa

be prime factorizations of a, b, ¢. Let wy be the greater of

the numbers an, 84 wy the greater of the numbers aa, Bz; and
s0 on. Then .

o= prUipget - - - (psw,
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and
(VJC') = 'Plnpzf: Tt paﬂ

if 71 is the sinaller of the two numbers wy, ¥;; 73 the smaller
of the twe rumbers e, v, and so on. It suffices to show that

v — xo iz divisible by pty, pe o L., p separately. To \
prove thiz we potice that one at least of the congruences KoY

)
a — = 0 {mod p*), 8 — 2o = 0 (mod p:‘”‘) \/

is true. Lei it be the second one and 81 = @,  Onf Bhe other
hand (b,¢) is divisible exactly by p.», and by hy@hems

B — =0 (mod (d, 6))
Even more &

8 — v =0 (mod plflju‘
and, since

B—xzo=0 (rxmd& pf’l)

* A db
and w; % 7., we shall have .,W v-abraulibrary org.in
"\

¥ —-:m\‘é 0 {meod py).
In the same w ay; th,\ prove that v — 74 is divisible by ps"
P . Thu “the statement is proved in the case of
three fongmences

Suppmm@:\ow as being proved that the conditions

@ — BEN (mod (@,8)), ..., a—x=0(mod (k)
B=PE 0 (mod (b,e)), ..., £~—«=0(modbk)

:»\s) R - o
\ s~ k= 0 (wod (3,K)),
are sufficient for the solvability of n congruences

x = « (mod g), z = 8 (mod b), C ey
x = (mod 1), z =« (mod k),
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we shall prove that the additional conditions

a—h=0 (IDDd (a,l)), B—h= 0 (D’lOd (baz’))s
x — =0 (mod (k,0)

assure the possibility of n + 1 congruences

oy

=a(moda), s =8 (mod?d), ...,z =»:{mod)(
The most general solution of n congruences is X 1\3
¥ = zq -+ ¥, (N:‘«

where z, is some particular sclution and » the lgm of a, b, ¢,
.y k. It suffiees to show that the congruénce

vt =) — z (mod Dy
is solvable, To this end let the prime)s;’enter ma,b, ...,
k, | in powers p™, pifY, . ., pf‘\, pi* and let w, b the
greatest of the exponents ay, ,81 .+, k1, and 7 the smuller
of the two numbers A, andvaﬁ; Then y contains pi 1l the

power p and (v B ealteinkitln weffiDrime in the power
P, Of the congruenges

a—zg=0 (mn?i P, B — x4 = 0 (mod pr*?),
\\ y & = 2o = 0 {mod p~)
at least onc js&iwe. Let it be the second, and 8, = w,. 1 the
other hani, '~b$' the hypothesiz
,\ B — =0 (mod p,),
wh@a“m:mlmmd with

™
4

RN\ B — 2o = 0 (mod p),
NN beeause 1y £ w,, leads to

A—zy=10 (mod Py,

and this suffices to show that A — z, is divisible by the g.c.d.
of Land »v. The congruence

v =X — 2, (mod })
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being pas<ible, the proof of the statement is achieved, while the
nature o the proof at the same time indicates a method for
solving ~imultaneous econgrizenees.

Exampie. Solve the congruences

= 1 {mod 24}, x = 4 (mod 38), z = 52 (mod 56).

‘\'
We hive (24,36) = 12; (24,58) = 8; (36,56) = 4, and since these num; ™
bers «f \ult, respectively,

L ¥
R
7%

4—4=0; 352 —4=d48; 52 —4 =48, .~.f

the prosoged systenm is solvable, To satisfy the firsi tirg” \ugmbnm
we seel: f from

24 =0 (mod 36) or 2Aw=m0 gm’o}:i).

Take = = 0, and then 2z, = 4 satisfies the ﬁmt hm eongruences. To
satizfy h( third, we seek { from

44 72 = 52 (:pimjd'as)
or AN
o .5ﬁ’f{,}}ﬁﬁ!ﬁprau[ibrary_org,in
and we enn toke § = 3, Thendd\+ 72 - 3 = 220 natinfien all three con-
griretees, nnd the most goncraNulutlf:n will be
\}»- 230 (mod 504).
6. Case of Moduli‘Relatlvel)r Prime in Paira. 1f the moduli
a b, c, ... hafe relatively prime in pairs, the system of
Himultanno}l\%}ongruencea
z ‘%‘(fnoda) z=8{modd),...,z=r{modl)
d\wﬁys solvable. This follows immediately from the
m‘lwml criterion of Sec. 5, but can also be entablished inde-

}N‘mlently by aetually exhibiting the solution in a very
cotivenient form. Let us first consider the specinl case

z=1(moda), =0 (modb), xm 0 (mod ¢},
,z =m0 {modl).
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We disregard the first congruence, and the gencril solhution
of the others is

z=be- U=
a
where m = abc - - - land tis an arbitrary integer.  To satisfyl, >
the first congruence, ¢ must be determined by Ko\
e N
f'ft = 1 (mod a). A
A )
Since be - - - [ is prime to.a, this congru\enc(‘u solvable.
Let A denote some solution of it; then z = A e fies the
N
congruences: L

¢ = a (mod a), & = 0 (mod b), )

DL, 2 =0 (meid ).
Simila,rly, if B, C, L aradat‘erm.med by the eongruences

—B = 1 (mod b), @&aw@m@y orgin lL =1 {(mod I,

the numbers : {\
Bt \J 1 "
B?}Aﬂ{\ C?"Y, e ey If‘z"x
will satisfy, tl\lg S‘}stems of congruences

T = @si(iﬁod a,), % = § {mod b), z = 0 {(mod ¢,
\;"\’ - r=0{modl
m_ 0 (mod a) z = 0 (mod b),

x = v (mod ¢),
Sy z=0(mod D)

m,
\
\

..................

¢ = 0 (mod a), £ =0 (med b), x = 0 {mod ¢},

e, = X {mod I
It is clear, then, that

AT Teo 4L "
a°‘+BbB'+ +LI—)\
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satisfies al! the congruences '
&= winoda), z=8{modbd), ...,z =\ (mod])

and the b:ost general solution is
" m m \
z= ta+ Bsf+ -+ Lh(modabe - - - 1. .
it b lf '.’\"\
This mcthod of solution iz especially- convenient whe\n}we
have to sulve several systems of congruences for“%k;a,rious
e, B, ..., Nbecause 4, B, C, , L are determined once
and for ali. It geems that gome sumlar metho"tl\waa known
to the grcient Chinese; henee the method «Gf this section iz
often calicd “Chinese method.” K7,
"~
Example Holve the system of congmencé&.‘ .
¥ =1i:mod2), z=38 (1n0d5),$ :ad;{mod?},z =6 (mod I1).

Te deterniow A, B, €, D we havedd °mlve the congruences
w3 ww.dbraulibrary org.in
37104 = 1 (mod % 14.11B = 1 (niod 3},

19116 =1 (n{xl 7y, 107D =1 (mod 11}
or
4 = 1 {mod 2)\\ fj‘ = ~] (mod 5}, 5C =1 {mod 7),
4D =1 (mod 11).
We can tai.s 1:-—'\]( B = —1, C =8, D = 3; then

$

.-—“.\O:* "~ 469 + 1320 + 1260 = 2503 = 193 (mod 770).

\\\ Exercises
Lbiﬂw the simultaneous congruences
mNa) = =3 (mod 4),2 = 6 (mod 15), 2 =T (mod 36), = = 70 (mod 48);
JB) 2 =2 (mod 4), z = 6 (mod 15), = = 30 {med 36), 5 = 42 (mod
48).
Ans. (a) Tmpossible system; (8) = = 426 (mod 7207,
2. Solve the simultaneous congruences

x=1(mod7), «=6{mod22), =z=11 (mod13)
by the Chinese method, “Ang. = 50 (med 2,002).
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7. Congruences of Higher Degree: Composite Moduli.
Let m be a composite number factored into facters e, b, ¢,
..., I relatively prime in pairs and

f(z) = 0 (mod m) (4d) ,

& congruence modulo m. This congruence iy equivatent(te’
ihe system of simultaneous congruences 'S\

\

f2) = 0 (mod a), ) =0 (mod B}, . . ., fx) S mod

(4

which we shell call {B). Consequeuntly any rocR‘ of the pro-

posed congruence mod m must be eongruent\po some root o of
K1)\

Jz) = 0 (mod g,

mod g, to some root 8 of O

f(z) = 0fod b),
db~r dlibrary.orgin
mod B, and go on. t‘f\érr‘fyerse y,l éesiéna%ng by o, B, . . . 5 A
i—:mrbltranly chosen rootg ei*the congruences (B) and detcrmin-
ing z by the simulta\nggus congruences

T=a (moé;t}}, z=p(modb), .. .,z="nr{modl) ()

2 will be o106t of the congruence (4). Thus, to have all
roots of Q‘%\)‘, it suffices to attribute to o, 8, . . . , M all possible
vah{ \md for each chosen system o, 8, . . . , A solve for
ttxe}pongruences (C); all roots of (A) thus obtained will be
¢distinet mod abe - - - I = m. Hence, if N(m) denotes the

.\ Y . .
YV humber of distinet roots of {A4) and similar notation is used
for the other congruences, then

Nim) = N@N®) - - - N{@).
Example. Tind sll the roots of the congruence

2% 4 1922 — z + 23 = 0 (mod 42},
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The congruane
234+ 192 — & 423 =0 {mod 2)
has one roui, « = 1. Congruence
gt 4+ 1952 — 2 + 23 = 0 {mod 3} ~
has two root-, ¥ = +1. Congruence A
A ¢
28N
o 4 10xf — & 4+ 23 =0 {mod 7} '.(\\"#
has three ruots, v = £1, 2. Consequently the proposed copg’{m;ﬁ/ce
has six di=tinet roots. To find them we must solve the simﬁltaﬁeous

congruenco: (V.
\:"\
r o wimod2), x=p8(mod3), z=NwodT7)
for gix systens o 3, ¥: ’x:\\"
o g ’“‘\V
11 1AV
1 1 '—’}, ut
1 1 %'2:‘
1 —1gt1
i ‘_T.‘f:‘ __-ilbrauljbt'ary.org,in
-1 2
K

By the Chinese method we{ﬁx}}
4 \\0
z 33105 — 148 — 6y (mod 42),
whence the «iv rogfe’ef the proposed congruence arc

(W% =21 — 14 — 6 = 1 (mod 42)
21 — 14 + 6 = 13 (mod 42)
21 — 14 — 12 = 87 (mod 42)

A

3 T =
N =21 4+ 14 — 6 = 29 (mod 42)
. \" z =21 + 14 + 6 = 41 (mod 42)
™ s =21 -+ 14 — 12 = 23 (mod 42).

8. Congruences of Higher Degree: Moduli Powers of
Primes. By the preceding section, solution of congruences
for composite moduli depends on the solution of similar
eongruences for moduli which are powers of primes. Let

f(z) = 0 (mod p*) (4)
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be a congruence whose modulus is a power of a prime p.
Every root of this congruence module p*~! is congruent to
gome root § of the congruence

f(x) = 0 {med po~h), (B)

which root is in turn congruent modulo p to some root « of t\hg

congruence ~\ “

fix) = 0 (mod p) W M)
. l o ‘
with & prime modulus p. To find all roots of (4), wu;h rent 1o
g mod p*! we seek them in the form NG \\

\

g=p B N
< )
FB +p7't) = JB) + 'p“‘ltf’(ﬁ) < > ey

By Taylor’s theorem

In thiz expansion all terms, 'begmnmg with the thind are
divisible by pe, for a;lmadyb?wﬁbﬂaw 888 > 1 and

ST SAAC)
1:Q’ 1-2-3

clearly are ihtege(s Hence
S pet) = f(8) + po4’ () (aod p°),

and thl;&\:ﬁ tust be determined from the congruence

O F8) + p4f'(8) = 0 (rmod p),
C w}mh is equivalent to

R\

W (8 +J;(f,) = 0 (mod p)
ar
¥ + L8 18) _ 6 (mod p), D)

since f'(#) = f'(a) (mod P)-
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Now we¢ :ust distinguish two eases: (1}f'(«) nondivisible by
p,and (2) /'{a) divisible by p. In the first case congruence (D)
has & unigue solution mod p; in the second case it is ecither
impossible: or has p solutions. Consequently, to each root
of the congruence (B) corresponds cither one root of {4),
of p Toot.:, or nohe. N

The procedure for solving (4), according to these explans-)
fions, coisists in the following steps.  First, congruemfe\(C)
with primo modulus must be solved. Then we seek roots
of the conrgruence Pils

F@) =0 (modp?) 2O ®)
eorrospoiding to each root of (€, After ,t}{@ we seck roots of
f{z) = 0 (mod 3{'?):\"
corresponding to all roots of (E), andgoon. By this process to
each root « of (€} will correspond a unique root of (4) i
f/(e) is not divisible by p. J the contrary case, (4) has
either b roots corresponding o EevHloH tvanin

Notg: Tt can be shown thag the congruences f{o) = 0, (e} = 0 {mod
#} san hold only for prifads’ dividing the diseriminani of the eguation
f(zy =0, The l'l\ll‘ﬂb’b{\if such primes is therefore limited, provided
f(x) = 0 has no mulbiple root.

Exzample 1. Sx\ilvé the congruence

N 2 — 2 + 2 = 0 {mod 27).

Moduls \{:\fhls congruence has the unique solution —1. We have
f(“{},f;\ﬂ, J(=1) = 1. The congrucnce
oY 41 =0 (mod3) '
\]fa.x-; a unique solution mod 3, and we can take ¢ = —1. Then ¢ = —3
'— 1 = —4 iz the only root of the congruence
w8 = 2p -2 =0 (mod 9).
Again, f(—4) = —B4, f/(—4) = (=1} =1 (mod 3), and we have to
seek { from the congruence )
i — 6 =0 (mod 3),
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whence ¢ = 0 (mod 3), and we can take ¢ = . Thus x = -4 (mod 27}
is the only root of the proposed congruence.
Example 2, Holve the congruence

2% — 2z + 6 = 0 {(mod 125).

Modulo 5 this congruence has two salutions, 1 ands2. If wu take ﬁx:st

e = 1, then f{1) = 5, f/(1) = 1, The auxiliary congruence AN
e\
t+1 =0 (mod 5) N/
has one root only, and we can take$ = —1. Thenx = 1’~\ A
1 the unigue root of m\\'

x?F — 2z 4+ 6 = € (mod 25)

. N ) -
congruent 1 mod 5, Agam f{—4) = —30, f’(—;}) =46 = | {mod 3).
The wuxiliary congruenee to determine ¢ is Q'\

$
N\

t -2 Eﬂ(chfﬁj.

Taking t = 2, then = 25 -2 — 4 =48 is the only root of the preposed

congruence congruent 1 mod j.. % ]}' wapghinith « = 2; thea f(2)
; b ¥y
=10, f{—2) = 10. THe" a\,'i"qn a,ya}fﬁ?ongruence

160N 2 = 0 (mod 3)
+»$ )
15 impossibe. Hencé\\"'

KD % — 22+ 6 =0 (mod 25)

Y/
has no roots €ougruent 2 mod 5; thus the proposed congruence has no
solution =@¥mod 5). It follows that there is a unique root, = = 46

O
N Exercises and Problems
...\3:\,:1: Find all distinet solutions of ihe congruence z2 = 46 (mod 105}
\‘; Ams. & = +61, 26, +19, +16,
2. Find all distinct solutions of the congruence z® — 11z - 362
~ 36 = 0 {mod 135). Ans. Impossible.
3. Bolve the eongrucnee 2 — 3z 4 27 = 0 {mod 11253,
Ans. ¢ = 648, 273, —102 (mogd 1125},
4. How many solutions has the congruence z = 1 (mod m)? Ans.
Let ¢ = 1 or 2, aceording as m is divisible only by 4 or by 8; in all other
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cases ¢ = 0. “lsolet » be the number of distinet odd prime factors of m.
The requestes] unmher is 20+, .

& Prove tfu- (ollowing generalization of Wilson's theorem: The product
of positive inlegers relatively prime to » and less than mis = —1 {mod

my if m is 2, 0. power of an odd prime, or the double of such a power;
in all other i s it i3 = 1 (mod m).

9. Congruences with a Prime Modulus: Lagrange‘e‘:\
Theorem. A~ we have seen, the solution of congrucneés)in
fhe last iusiance depends on that of congruences wigh:’prime
moduli. Clongruences with prime moduli posséss® many
remarkable properties and, on that account, dese\';re special
consideraiion.  Here we shall consider onlidne of these
propertie=, -xpressed in a very simple an}i yet important
theorem di-rovered by Lagrange in 1768 Consider a con-
gruence for <he prime modulus p NV

f@) = parr + part - “..’g'.._}- Pa = 0 (mod p)

and suppo=: that po is not di\\{i'ejfliil@.,}pm.g{,lﬁgrg{l?toﬁhg COngri-
ence 1s of degree no Lagrange's theorem states that it cannot
have more thun 2 distingt\roots.

This proveriv is gerteinly true for congruences of the first
degree which hawe §>actly one rtoot. Supposing now thab
eongruences of degrde n — 1 with prime modulus do not have
more roots iliy“their degree, we shall prove that the same
holds for g:.@g,:fuences of degree n, and that will be sufficient
to conw‘{s@&:' surselves of the truth of Lagrange’s theorem in
general.

. Léta be a root of

) i F(z) = 0 {mod p}
50 that f(a) is divisible by p. The difference f(z) — f(o)
I5 divisible algebraically by z — a, and the quotient is a
polynomial of degree n — 1 with integer coefficients the first
of which is p,. Thus, we have identicaily,

f(z) = (z — a)fulz) + fla).
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Now let b be any other root of

f(z) = 0 (mod p)
different from a. Then, by the preceding identity,

f®) = (b — Ofi(d) + fla), O
and, since f{a} and f(b) are both divisible by p, U
(& — a)f1(d) = 0 (mod p) D
or - %)
fi(b) = 0 (mod ?3),\‘ ’
“because b — o is not divisible by p. Th{xls? if the coupruence
#(z) = 0 (med P

had, besides a, at Ieast n othemToots, all these roots would
be ro0fs of wwi.dbrallibrary.org.in

fi(@h=0 (mod ),

which is impossible,’\‘lgécause by hypothesis this congroence
of degree n — 1 Qa}not have more than n — 1 roots.

As 4 0_01'011&1'5% 40 Lagrange’s theorem we have the following
propositiony™ ™

If thf;"g’éhéi'uence
\\” P+ pamt ¢ - - 4 pa = 0 (med p)

.iﬁi.’&a:tisﬁed by more than n integers distinet module p, then

\\mécessarily all the coefficients po, Py, . . . , Pn are divisible
by p. For suppose that p; iz the first of the coefficicnts
Po, P, « .« .« 5 Pu nondivisible by »; then the congruence

pai+ + -+ 4 p. =0 (mod p)

1'){ deg?ee n — 1 would have more than n roots, which is
impossible by Lagrange’s theorem.
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10. Soire Applications of Lagrange’s Theorem. Consider
the polynuinial

foy et = 1={z -1 -2 @~-p+1)

of degree » — 2, By Fermat's theorem
22t — 1 =0 (mod p) L\
fore =1,2, ...,p—1 Also the product \ O
(z — 1}z —2) - - - (z—p+1)

vanishes [or the same values of z. Consuquenﬁy the con-
gruence
' f(z) = 0 (mod 33)

is satisfied by p — 1 values of z dlstmet modulo p, and this
can be only if sl the lOE’fﬁ(‘lentS of f(;r) are divisible by p,
$0 that

b (x) waﬂirauhbl ary.org.in

where () 15 a polynomy-ﬂ with integer cocficients, Thus,
identicaily in z XY )

N/

e (a: —\})(x -2y - - (a—p+ 1)+ pela)

Taking here % ap, we get
1 =123 -+ (p— 1)+ pelp);

Th&t is \,,
’~,\ 1-2:3 -+ (p—1)=—1(modp).

I‘hhs we have another proof of Wilson's theorem.
) For another application let @ be an arbitrary integer non-

divisible by p. Then, since
0,4 2a, ..., P—,I)a
is a complete system of residues mod p, we have
S.p) =041+ -+ +p-1r= a"S.(p) (mod p)
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or

(@» — 1)8,(p) = 0 (mod p).

If » is not divisible by p — 1 and, when divided by p — 1,
leaves the remainder r <X p — 1, then by Fermat’s theovem

a* = a* {mod p), RO Y
and so O i
{ar — 1)8.(p) = 0 (mod p). N
The congruence K7,
= 0 {mod p) ~ \\

has not more than r < p — 1 roots, w he w1t follow: that
among the numbers 1, 2, . . . , p — l'ther(‘ is at least one
number a for which ¢ — 1 i not dwmbie by p, but theuw

‘,o

Sa(p) = 0 (med )

provided #n is not (hwlqlea‘]iﬁﬁﬁplbpaﬂy otBlilk result: has beon
proved already in Sec. 11 Chap. VI, but By & less simple and
general method. \

11. Condition fO\QGDngruence to Have Number of Roots
Equal to Its Degree Every congruence

pnx“\l‘ ,’Plxﬂ_l + < 4+ p. =0 (mod p)
72
of deg@};‘f@r the prime modulus p can be reduced to the form

\ 2 +rett 4 - - =0 (mod p).

e

~Fd do this, deterriine m by the condition

\/

pom =1 (mod p)

and multiply boeth sides of the proposed congruence by m.
The resulting congruence

pomx® - pymart + -« -« - mp, = 0 (mod p)
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is equivalen. o the congruence of the requested form. Every

congrueLen
flry = et 4 - 0 o 4y = 0 (mod p)
can be replusad by an equivalent congruence of degree < p.

Divide f{.) v+ — z and call the quotient and the remaindet}),

respectively. o(r) and F(z). Then from the identity o

L 3

fx) = (@ — D)elx) + Fx) RS
and Fermut ' theorem it follows that every roqthf"f(:c) =0
(mod p) i+ = root of F(z) = ¢ (mod p), and\yice versa; but
the last cauzvnence is of degree < p if not albof its coctlicients
are divi<ih's by p, in which case it is saj:iésﬁed by all integers.
Now le! ihe degree of the congrueiegy’

for w4 ret A = 0 (mod p)
be < p. !Hvide 2?2 — z by b Gx)xaﬁd:@ﬁﬂa*ﬁmﬂ%?yeé%gﬁgx) and

the remaiv.ler r(x), so that
v (@)= f@f () + 7).
TN
H f(z) = @ (mod,p)\has exactly » roots, then the congruence
7z} = 0 tmod p\’)}w’ill be satisfied by n integers distinct m?d i
As the degred of #(x) is n — 1 or less, this can be only if all
the coeffiiexts of r(x) are divisible by p, so that
O ' r(z) = ps(z)

)\(hé}%&a’ the coefficients of s{x) are integers. Conversely, if this
Qﬁ‘ndition is satisfied, the congruence

f(x) =1 (mod p)

will have exactly n roots. Since for every integer 0, 1, 2
., p—1 both 2» — 5 and r(s) are divisible by 7, the

congruenee

F@)f:(x) = 0 (mod )

N
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will have p solutions. Of these, let s numbers satisty Lhecon-
gruence f(z) = 0 (mod p); then the other p — & Wil satisfy
the congruence fi{z) =0 (mod p) of degree p -~ n. By
Lagrange's theorem

s§=n
and SO\
p—s=Ep—n; N

N/
thatis, s = n. Both conditions on s and n can hold o™, when
s = n, and so the congruence \\

f{z) = 0 {(mod p)
has exactly » roots. PN
12. An Application. A number a is_called a “‘residuc «i the
eth power of the prime p"" if the congkuence

2* = a (mddp)

is possible; otherwi%%_gblgﬂjﬂﬁ-aayfétg)‘rrresidue of the eth
power.” For e = 2, 3, 4 we can thus speak of quadrutic,
cubic, biquadratic regidtes or nonresidues. The number
a =10 (mod p) is a¢rivial residuc and will be excluded from
further considerati(%s. As we shall see later, the considera-
tion of residuegdf/the eth power presents interest only when
p—11is divi:si\b1e by e. Assuming this, we may ask the
question g..I}"n\der what conditions is the congruence

e/

O z* = g (mod p)
N\po%"aiﬁl‘e? Let p — 1 = ¢f; then we may write
N/ gr i — 1 =¥~/ o/ — 1,

On the other hand

2/ —af = {27 — @) (@YY - gr 4+ - - @)
and
2~ g = (z* — a)Qx) + (@& — 1)z, (4}
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whore

Q(z) = x(xV~V 4 qzeVD 4 - - - 4 o/,

New if there is a number « such that «f —~ ¢ = 0 (mod p),

thzn from (A) and Fermat’s theorem it follows that 2\
= 1 (mod 7). P \“\’
Counversely, if this econdition is fulfiled, by the cntemn of
the preceding section the congruence K ( N
z* — a = 0 (mod p) »,'\‘

\
wiil have exaetly e so]utions Thus we rea\l the conclusion:
@, nondivisible by p, is a residue of the etlf ,powcr if and only if
p—t \S,
a¢ =1 (mgd,p).
T'his eondition being fulfilled, tJ_l‘e E(mgruence

2 ;?}V‘{-’Iﬁfoﬁ)ﬁuhbl ary.org.in

iz exactly e solutlcms \
If p is an oadd pk ﬁ,'a,nd a is nondivisible by 2 then, by

Fermat’s theorem,
W p-1 -_:3
ar=1 ~~1\=é (a 27—~ Da ¥ 4+ 1) =0 (mod p).

Henee 011311@;;\

oy

o/ -

O ¢ % =1 (mod p)

-

p—

QO &7 = —1 (mod p),

and both congruences cannot hold simuitaneously. Conse-
quently, a is a quadratic residue or nonresidue of p according as

Kl
™

a 2 =1 {modp)
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or
p=1
a = —1 (mod p).

This theorem was discovered by Euler and 1 kunwn as
“Ruler's criterion.” o
The identity A ¢
O\
P — = :c(xf — 1)(;.;;&—11 dopftest 4 - -+ -:') s\ .
again, by the criterion of Sec. 11, shows that the g:,tﬁﬂf‘::uorrce

P

zZ — 1 =0 (mod p) \\

has exactly f solutions provided f is a divisor of p — 1.
Hence we conclude that, for p = ¢f +-{d{there are cxnctly
7= {p ~ 1)/e residues of the eth poweriamong the N Lers
1,23 ...,p—1, and Le:—l?f(p = 1) nonresiducs.

Thus for an odd p thgﬁeb arﬁiﬁa;-y})}é%nquadratic resi '%ues
and (p — 1)/2 qua&i'\ﬁ\ﬁiq enresidues among the noambers
L, 2 ..., p-1L Fonp=3+1 there are {p — 1)/3
cubic residues and 2( > 1)/3 cubic nonresidues in the series
1, 2,...,p —’1.\ For p = 4f + 1 there are (p — 1)/4
biquadratic residuds and 3(p — 1)/4 biquadratic nenresidues
in the series 1%/ . . . ,p — 1,

I
:"\.‘0
1 Let S.(o, 75, . . ., 7p) be a homogeneous symmetric function of
thaedeterminates 2y, ®, . . . , %, of dimension n. f p is a prime and
#nig not divisible by p — 1, then 8.{1, 2,3, . . ., ) = 0 (mod 2.

/ 9. Prove that for a prime p = 1 {mod 4) the congruenve 22 +1 =10

(mod p) iz solvable and has two distinet roots.

8. Prove that for 4 prime p = 1 (mod %) the congruence 24 +1 =10

(mod g} is solvable and has four rootz. From this result deduce thai

both congruences 22 — 2 = Qund 2* + 2 = O (mod p) are sulvable.

4. Prove thai for a prirce p = 1 {mod 3) the congruences z* + 2 + 1
= DQand 2* 4+ 3 = 0 (mod p) are solvahle.

Exerciges and Problems
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5. Let p be a prime, b some quadratic nonresidue of p, and

@ + Vb — @ — Vb
2\/5

a pelynomial in z with integer coefficients. Show that the congrucnee \
Fizy = 0 {mod p) has p roots. O\’
¢. With the notations of the preceding problem, and denoting b@ e

Fiz) =

divisor of p + 1, show that the congruence

A\
Y
I — b £/
GV eV g (O
24/b X
has exactly ¢ — 1 Toots. \\
7. p = ¢ + Lis a prime and N denotes the mber of solutions

of the congruence ¥* = @ {mod p), then \m}\v

p—1

\J
L
N = 2 (i — {z* —.@%7" (mod p).
N\
=1 \,:;*
z\;‘gww.dbraulibrary,org,j
Henee, by using the properties of 8x(p) = 1" -+ 2 1 R — 1
deduce that ’\\
e Ny
N = %\ }herwise.
X)

 {
N/

¥
¢ ;\ o

O
\y

«
W™
e ¢
" \%

<‘>‘~../



APPENDIX N
CALENDAR PROBLEMS N

1. Relation between Dates and Days of the{Week. It is
familiar to everyone that, in the universally adgpted Groporian
calendar, the common year consists of 365 days av:! cach
leap year of 366 days. Leap years a;-e\: the years for which
the number is divisible by 4, except lte kenturial years, -vhich
are leap years only if divisible by, 400. Thus, the fir<t cen-
turial leap year after the veformation of the calendar, v hich
occurred in 1582, was 1600 hut{_]ﬁzoo 1800, 1900 wore ¢o:nmon
years; the next centii¥ii] elaai*? irelz'a.?ly’y\i’il be 2000, and =0 on.
It is easy to determine{the number of leap years between
1600 exclusive and a given year N inclusive. The number of
all years for which ﬂ&% number is divisible by 4 in the ag<umed
interval is the safie as the number of integers & such that

A</
N 400 < <.
A& 4
that is,\ w
N N
~\ 3 [IJ — 400,

N
\From this we must exclude the number of centurial years

not divisible by 400. The number of all centurial years
between 1600 exclusive and ¥ is

N
[T{ﬁ} — 18,
206
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and miwsong them there are

i) -

divisitle by 400. Consequently the number of centurial
years which are not leap years is ¢\ \
.’\.
N N
[m] - [m] - o\
&/

and ihe reguested number of all leap years Rétween 1600
exeligive and N inelusive is thus O

4

N N FAN"
T = [z] -]+ [ﬂm} 988

This expression can be put 1nt0~’mt)re convenient form by

i
puiiing www d%auhbral y.org,m

N = IOOC +
where O is the number ofspenturlcs and D < 100. Then

] 250+[*D\]L 100 =G [4_?)’0]=[§}

\;:§,+= [2} 0+ [_] + 25¢ — 388.

Sm\ce n a leap year an additional day i2 added at the end of
Eehruary, it is convenient to proceed as if the years begin in
Match, Then March, April, May, . . . will be counted as
the first, second, third, . . . montbs of the year N, while
January and February of the same year will be considered
ag the elecventh and twelfth months of the year N — 1. It
will be also eonvenient to denote days of the week beginning
with Sunday by 0, 1, 2, . . ., 6. Now suppose that the

and

N
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first of March of the year 1600 had the number ¢. Since the
next following year 1601 was a common year, 365 days
elapsed between March 1, 1600, and March 1, 1601. But
365 days consist of 52 full weeks and 1 day; heuce March 1,
1601, had the number @ 4+ 1 or this number dimini~hed by 7
Again, since the years 1602 and 1603 were conunon years;
March 1, 1602, and March 1, 1603, had the numbers.2 N
and a + 3 or theze numbers dlmnushed by a properyniitiple
of 7. Between March 1, 1603, and March I, {60, since
1604 was a leap year, 366 days or 52 weeks and,}'\fﬁj\ nlapsed;
hence the number of March 1, 1604, was a Jv5 or the least
positive residue of it modulo 7. AD

I iz clear now that every commeon x@R}' passed augments
the number of March 1 madule 7 by ohe unit and cvery leap
year by two units. Hence, to find- the number of March 1
in the year N, we have to add: 30" a the number of all years
between 1600 excluhlve d alse the number
of leap years in the & sﬁ“ﬁ‘ﬁa%gg?\l«lg %?c}}i% fIi'rt{alduce the sum to its
Aeagt positive residue od 7. Thus March 1 of the vear ¥
will have the numb{!{' & determined by the congruence

a’Ea-{-lOQEZ’Z*I;D— 1600-{-{%] ~C+[%]+25C

0™ — 388 (mod 7)
or 'S M
O
W @=a+D+ [9] [%] — 2C (mod 7).
A

\ ) For the year 1938, March 1 was on Tuesday, so ¢’ = 2; again
for the same year

D=38  C=1y; D+[Z]+ [%] — 2C =6 (mod 7),
whenee

2=qa-+6 (mod7), a =3,
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That is, Biarch 1, 1600, was Wednesday and the preceding
expression for o’ becomes

=3+ 04| 2]+ 4] - 20 moan. .

This eongracnee determines the day of the week on which, \'
Mareh 1 falls in every year after the Gregorian reform. ~ (%

To determine the weekday corresponding to the first of all
other montis of the year, we notice that

7

'\.

Apr. | has a number 3 units greater than Mazs f.
BMav | has s number 2 unils greater than Aphl.
Jine | has o number 8 units greater thambMay 1.
Julv 1 has a number 2 units greater t}m@n June 1.
Aug. 1 has 3 number 3 units greatersdban July 1.

Sepi. 1 has a number 3 units grea{sr than Aug. 1.
Ocr. | has a number 2 umts‘gre‘ater than Sept. 1.

Nov. 1 has a number 3 units «greater than Oct, 1.
Tl 1 has a number 2 th'greHicﬂml:dn'é{tymlg in
Jus. 1 has a number3d units greater than Dee. 1.

Fri+. 1 hasa numbﬂ' 3 units grester than Jan. 1.

¢ \J

The exprezsion N\ *
[2.6m — 0.2]
takes the same Jh?rements when m tuns through the numbers
1,2 . :2{7bror which it is easy to sec that the number
of the da;\;ﬁ Ahe week corresponding to the first of the month
whose num bor is m is the least positive residue of the expression
O C

'\‘: 1+ [2.6m-—0.2]—|—D+[—~]+[74]‘20
modulo 7. Fipally, the number of the day of the week cor-
responding to the kth day of the mth month is determined
by the eongruence

f=k+[26m—-02]+D+ [2] + [—(ﬂ — 2C (mod 7)
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This useful Tule was proposed by Rev. Zeller. 't must not
be forgotten that January and February of a given year are
considered here as the eleventh and twelfth months of the
preceding year.

N\

Example 1. What day of the week wus August 1, IHil? Herg we
have ¢\

5 . o
¢ =19, D =14, D+ [;] —+ [fi] — 2 = :'.:'\.‘-.,1'};:{1 g
m=6 [26X6—021=1 k=10dr
Consequently v
f=2+4 =6 (nod TN
or f = 6. Therefore August I, 1914, was Sﬁt}rdm
Ezample 2. Febyuary 29, 1952 wlll aegur on what duwy of the week?

Here

¢ =19, =:)1 wdlg“a"ﬁl‘lib}y‘} DE%} ¢ =1 (nnal T)

m=12 (26 >Sz — 021 =3 k=1 (medT;
\ =3 (mod 7).

Hence February 29, }QM, will be on Friday.

Zfﬂller’s rulpaé;azh be presented in a different form by intro-
ducmg the gerrfainders @ and b which the number of the year
= 10{{('}\-1— D leaves when divided by 4 and 7. For D) we

have ‘blge'two COngruences
.\

™

A = g {mod 4), D=5 — 20 (mod 7).

\ ) Solving Th?m Ey the Chinese method, we get the general
expression for

. D=21a+85—160—|—283,
whence

D
[;]=5a+2b—4c+7z
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and
|

W

—|+DE —2q¢ — 4b 4 € (mod 7},

Zeller’s congruence becomes, then,

F=k- [26m — 02] — 2¢a — 4b 4 [%] — (C {mod 7) .rt\t\

)
and can i« used for solving problems of the following typbﬁ.

Example 3. On what days de Sundays oceur in March,?‘ .For Sun-
days f = 0t ind for March m = 1, [2.6 — 0.2] = 2, s0 th\s,t»\

E=24+4b + O — [ ] (magb’l,}

Take, for voample, N = 1938; then a = 2, b,—ﬁ, (' =19 and
k=28 {mod{.{),

that Is, in 1933 Sundays fell on Mauﬁ 6 13 20, 27,
Example &  In what years of thé: St skt siliNosrisher 18 fall
on Bunday? Tn this case C =A8, k = 18, m = 9 and the congruence

Q @Ph = —1 (mod 7)
raugt be sniicdod, I gkes
> b =3 +3a @moedT)

W
and “ :’ )
o D = 17a {mod 28).
}“\'s.
Corrcspo@?«.fé toe =0, 1,2, 3 we have

AN D =0, 28, 56, 84

NV D =17,45,73
9 D = 6, 34, 62, %

D = 23, 51, 79.

The present century began in 1901, and [} = 0 must be excluded. The
following years, therofore, answer the Tequirement:

1906, 1917, 1923, 1928, 1934, 1945, 1951, 1956, 1962, 1973, 1979, 1984,
1990.
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2. Remarks on the Church Calendar. Zellet's cungruence
virtually seolves all problems concerning the ordivary elyil
ealendar. But Christian churches have other calendar
problems concerning the fixing of dates of movahle feasts
whieh all depend on the date of Easter. By the decision of ON
the eouncit of Nicea in 325 A.p., the date of Easter wag fixed
by the following rule: Easter must be celebratidd gu\the
Sunday immediately following the first full mocoy Mwhich
oceurs on or after March 21. Thus the probleaf o deter-
mining the date of Easter is coraplicated by tlt Wcco=sity of
reconciing two entirely different ecalendars<s@lar an:! lunar.

A very good adaptation of both calendargdspbascd on o eycle
discovered by Meton, a Greek who liv ddn the fifth coentury
B.¢. This is called the Mestonic cyglel%mugh thiy evile was
known to the Babylonians and Chineése long before thi time

of Meton. The duration of ghe’ ‘tropical solar year iz very
nearly 365.2422 days, or 363 days, 48 min., and 48 sec.,
while the duration%YY&%%S%%?&?E;ﬁodic month is very
nearly 29.530588 days¢29 days, 12 hrs., 44 min., and 2.8
sec. Now the du(it\i{{n of 19 tropical solar years 1s

19 - 365.2422 =(6)939.6018 days, or 6,939 days, 14 hr., 27 min.

AS
On the oth{‘('“hand, the duration of 235 Junations is
.n\:‘
235 ;3@\530588 ='6,039.6882, or 6,939 days, 16 hr., 31 min,

Thus 19 solar years are almost equal to 235 lunations; henee,
m\;af\ter 19 years the same phases of the moon again fall on the
same days of the year, or very nearly so.

For practical purposes of calendar reckoning true durations
of solar years and lunations cannot be used. Instead, the
length of the year in the Julian calendar, then used in Rome
and adopted by the old church, was 3654 days and the mean
length of lunation was adjusted in accordance with the Metonic
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cycle. Yrurs beginning with the year immediately preceding
our era v ere divided into eycles of 19 years, and each of the
eyeles con-isted of 236 lunar months of 29 and 30 days dis-
tributed Lirntieally in all eyecles, with the provision that the
lunar menth comprising February 29 in leap years was
lengthencd by one day.  All these 235 lunar months Were comey,
bined inte: 19 lunar years: 12 years of 354 days (‘OHGIbflng\Of '
6 monti- ¢ 29 and 6 months of 30 days, 6 embolismic\years
of 384 davs with one additional month of 30 daysg hn(} one
embolizmir vear of 383 days, the last in the cyt,le,.,(mthng with
a month of 29 days. Altogether the tofallemgth of 235
months in a cyele, disregarding augmentatu@ eaused by leap
Years, was R

19-354 + 6 - 30 + 29 ="6935 days.

Now 1f |

1
1

¢2p year happens on the: ﬁrst sceond, or third year

of the cyvic, there will be fivel @\g,g, JERIE hg@g}'g, will. be only

four leay vears if the first 1dap year falls on the Ftn year
of the ey sle. In the first® three cases the eyele contains
8,940 day+. and in thellast case only 6,939 days. The mean
duration of the cyt\}e is therefore 6,03934 days, agrecing
exactly with 19 Juhan years.

A place whidh any year occupies in the respectne eycle is
called the gblden number” of the vear. Thus, golden num-
bers of \nﬂ years occupying the first, second, third, etc.,
places in the eyele are 1, 2, 3, .. Since one of the cyclos
begzim m the year 0 of our era, 1t is clear that the golden

\]mﬂlbm of the year N is the remainder c, obtained in the
vision of & by 19, augmented by 1.

The epact of a year is the age of the (ealendar) moon on
Mearch 1 of that year, the age being 0 for the new moon. It
must be noticed that with the ancients the day of the new
moon did not coincide with the astronomical new moon but
was the first day on which the thin crescent became visible.
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Hence the full moon followed 13 days after the new moon.
Now in the first year of the eycle, according to the old church
calendar, the cpact is 8. Since the first lunar year of the
eyele contains 354 days, which is 11 days less than 365 dayss,
the cpact of the second year will be 8 4 11 = 19; agsin, j;he >
second lunar year contains 354 days, which augmentsifhe
epact by 11, so that the epact of the third year will be {9)% 11
=30, or 0. And, in general, the months of 29 apd\30 days
are so arranged within the cyele that, passing from’ year to
year, the epact is always augmented by 11; },m%éver, A% soon
as it becomes 30 or more it is reduced by subtracting a proper
multiple of 30 to obtain a number lesg-fhan 30. Hence, in
the old church calendar the epact E is cénipletely characterized
by the congruence ANV

E =8 + 11c\niod 30),

with the same mea{ymg‘dﬁlg@g];bgfgngg, i¥hen the epuct i B,
the first new moon in Mareh oceurs always on the 31 — E
day of March, and the mext new moon, with the arrangement
of the calendar ag itlis, always 30 days later, _
This adaptati&t\ of both solar and lunar calendars was
simple and sabisfactory enough to serve for a considerable
number of Feairs to come. -But at the time of the reformation
of the caleidar it was felt necessary to improve it in regard
to bpkh,,\t‘he length of the solar year and the phases of the
moon,s which then actually occurred four days earlier than
t\he"calendax indicated. To attain the first purpose, and
46 preserve at the same timp the simplieity of intercalations
of leap years, a very sensible arrangement was made to retain
as leap years only those centurial years whose number is
divisible by 400. This change necessitated the change in
epacts referred to as the “golar cquation.” By virtue of
the solar equation all epacts are diminished by 1 in century
years such as 1700, 1800, 1900, ete., which are not leap years.
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But there was introduced another change of epacts because
of the 7act that 235 lunations are not exactly equal to 19 Gre-
gorian years. This fact causes new moons to arrive one day
earlier than indicated by the Mectonic cyele in about 310 years
and necessitates another correction of epacte known as the
“lunar equation.” By virtue of the lunar equation all epa.ct@:\
are augmented by 1 seven times at the end of every 300 years
after the year 1800, and once at the end of 400 years cloqmg
the firgt peried of 2,500 years, after which the sameg process
is repeated over again periodieally. Thus epdefy in the
reformed calendar are not constant but vary frem’ century to
century. \)

As to the arrangement of the lunisola Seformed calendar,
it would he too long to explain herd(ih detsil. Referring
those who desire more information qﬁ this point to the excel-
lent article on the calendar in the, “’Encyclopaedia Britannica™
(all nower editions mr-ludm “Jlte thlriieenth but not the
fourtcenth, edition), here wey s\fl‘glfl glﬁrlé oY $hEéReerpt of
the important table knov@z a3 the perpetual calendar.

£ 3

Duys. .o s N 2 3 4 5| 67 8 010121213 14 15
. 25
Marclh "\ 0 20 28 27 28 | 25 24 2% 28 21 20 i% 18 IT 18
o ‘\’ -
& 25" 25
LA NS AN 20 28 27 96 24 | 28 22 21 20 19 | 18 17 16 15 14
\\ . L
D). ... .. 16 17 18 19 20] 21 22 23 24 25 | 26 27 28 29 80 | 31
X™ -
\Mémh ........ 1514131211 | 10 9 8 7 6 5 4 3 2 1| O Epacta
April. ... ... [131211 09876541821 02 Epacts

This table, for each epact from 0 to 29, gives the corresponding
day of the new moon in March and April. Notice that epact

Q.



216 BLEMENTARY NUMBER THEORY

25 appears in two forms: 25 and 25'. The first 1orm ¢or-
responds to years whose golden number is = {1 and the
second to those with golden numbers > 11. Nuiice also
- that the new moon next to the first one in March, it it falls on
March 1, 2, 3, 4, 5, 6, 7, follows 30 days later, with {wo exceps
tions corresponding to epacts 24 and 25", where Hu: inietval
between two consecutive new moons is 20 days. o)
3. The Date of Easter. The preceding  explinations,
though brief and incomplete, are necessary to 'n"niiff_-.’ under-
standable the rules proposed by Gauss for deterinining the
date of Easter., To derive these rules, the firdt ﬁmrvs:mry step
is to give a general formula for the Grego@aﬁn epact.  As we
have seen, all epacts are diminished b%“ in century years
which are not leap years. In the sameAvay the cxpression

C ‘,":1.
t[rz. W\
www.dbraglibrary.org.in

~

is diminished where ¢ igthe number of centuries in the vear.

Again epacts are increased by 1 seven times in intcrvals of

300 years and one fifm&’in 400 years. The same increas~s are
shown by the expression

N [80 + 13]

I\ %)

N\

as onﬁ'@}n see from the following table:

I
C=1819 3% |21 22 23‘24 25 2627 28 20

"a N
\ W
\ P

TT U85 8099 910 10 10)11 11 11‘12 12 l2|13 13 13 13

Hence it is easy to see that the Gregorian epact is defined by
the congruence

30 31 32:33 34 3536 37 38‘39 4 41 4%

Q!
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F=a+ [%] -4 [&;;LS] + 11¢ (mod 30),

where = is a constant and ¢, as before, is the remainder left
when be number of the year N is divided by 19. Now for

the vear 1900 the Gregorian calendar gives E = 29, Sincg~\.
i

¢ = 0. ¢ = 19, for this year we have N\

N/

90 = a4 — 19 + 6 = & — 9 (mod 30),

whepee @ = 8; and so in general mo\g"
e 8C + 13 o
B=8+ [z] -~ 0+ [—25 ] +<{§xmod 30).

Acecrding to the above table the Pagehal new moon in March
aceurs on the 31 — E day of M,garéh' or, considering April
as the extension of Mareh, on the, (31— E) + 30 day of March,
disregarding for the present th&iqu,'qgﬁegmﬂg}ﬁa?mg%}gd out before.
In gencral, therefore, Pasghal'new moons in Match occur on
dates # satisfying the cofgruence

;s AR 18] s = -[¢]
Foe 23_|_C_'[ﬁjl—[—25 e =23 +C 1
o [sc + 13
x'\"' — | =
% 25
and ria,fb}é = F 4+ 13 of the full moon satisfy the congruence

&«
S

i\f'l\f‘é —6+C— [C] —~ [SC J’—@] + 19¢ (mod 30).

] + 19¢ (mod 30),

4 T 25
To find the date of the first full moon oceurring on or after
Marech 21, we must find that solution of thiz congruence for
which G — 21 is as small as possible and nonnegative. . . Now
8¢ +13

¢
G—-—21=1+0C - [Z] — [—25 ]-i— 19¢ {mod 30},

N
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and consequently @ — 21 is the remainder in the division of

19c+M; M=15+0C— {‘ﬂ - [Sf—} 1_3]

by 30, which remainder we shall denote by 4.  Vinaily N
¢\
=21 +d e\

and the next foﬂum.ng date is March 22 + d.  Nog® *(E' must
seek the date of the first Sunday in March fallig)on March
22 4 d or after. Dafes of Bundays in Marechi qa}my the con-
gruence (See. 1, Example 3)

\.
b=2 44+ — [9] £ mod 1)
or : 'w
k-—22-—d~2a+4b+6&+0 C]+4(mnd?).
W W dbt'aulfbral y.OT g 4

Consequently & — 22 — 1 is the remainder in the division of

2\
O
2a + 4k 6d + L; L=4+C—[%]
by 7, whichyrefainder we shall denote by e.  Finally
2 E=22+4d+e

is th&ﬂte of Easter in March, considering April as an exten~
?\“’.“ of March. The date of Easter in April will be
\ ' dt+e—9
in case 22 + 4 -+ ¢ > 31,
We must consider now. changes that are caused by the two
exceptions mentioned at the end of Sec. 2. The first exception

corresponds 1o epact 24, In this case, as follows from the
congruence for E,

19¢ 4+ M = 29 {mod 30},
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and so d = 29. The date of the first full moon on or after
March 21 instead of being 21 +-d will be 21 +d — 1. To
determins 7 we must therefore change d into d — 1, which
changes ¢ 'nio ¢ + 1 if e < 6, and into 0 if ¢ = 6. The date
of Easter remains 22 + d - ¢ unless ¢ = 6, in which case this *.¢
date will e March 21 + 28 = 50, or April 19. A ¢

A
The second exeeption oceurs when E = 25 and, at t.lle -
game time, ¢ = 11, Then N
19¢ 4 M = 28 (mod 30), e\
o\
so that d = 28. Unless at the same time ¢ <=x\8/ nothing is

changed in the final rule. But if e = 6, ﬂ\“n Easter must
be celebr: .1_0{1 on March 21 + 28 = 49, }&prll 18, instead
of April 25. 1f we take ¢ = 11, 12, 13 4, 15, 16, 17, 18,
corresponding values of M will be \

N

M=2510,13 ~I‘ﬁ, 21 24, 29.

www.db lb
Thus finally we have the foﬂof&‘fﬁg rale’ ﬁz%'ﬂ/osea By Gauss

o find the “ate of Rasterz<
Divide the number of %e year N by 4, 7, 19 and call the
Tesulting uummders E,\S, c. Divide

C\";, 19¢ + M
by 30 and E&I\the remainder d.  Divide
& 2a + 4b + 6d + L

by 7 and call the remainder e Then the date of Easter is
\ March 22 4+d 4+ &) or April (d + ¢ — 9},

with the following two exceptions: (1) if d = 29, ¢ = 6,
Easter must be celehrated one week earlier on April 19; (2)
ifd=28¢=6 and M =2 5,10, 13, 16, 21, 24, 29, Easter
must be cclebrated one week earlier on April 18. As to
M and L, their expressions are
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C 8C 4 13
M=15+C‘[Z]*[T"]

L=4+0C-— [49}
N\

Similar rules apply for the Greek orthodox or Old Spyk&
calendar; only then M = 15, L = 6, and no excepi.-imag,g’cbur.

Example 1. Find the date of Faster in 1940, Throughou;,ﬂ)u: Bresent
ccntuty M =24, L = 5B; moreover, a =0, b =1, o= 9} THence
19¢ + M =62, andd = 2;2¢ + 45 + 64 + 5 = 21, an-&e\»— ). Laster
in 1940 must be eelebrated on March 24.

Example 2. In what years of the present centuryis Ea-.rm ceirlrated
op April 17 We must have d = 10 —eand /)y

19¢ +24 =10 — ¢ (mod\dOJ
26 + 46 - 610 — &) —]—5 "¢ (mod 7)

or
19c =16 — é{mod 30)

www d_H]%‘hI‘];?a(Pg/Ogl @m
c=44 11g (m({d 30), b= 3¢ + 3 (mod 7).

From the possuble valuesle = 0, 1, 2, 3, 4, 5, 6, only those must be relained
to which ¢ < 19 QITe \)Ildb Such values of ¢ are

whence

\/ e=10,1,3, 4, 6
nod wrrespond.tii@ﬂy
N ¢ =4 15,7, 18, 10,

o\ %

ﬁB,N‘we must solve the system of congruences

\ .
",:‘;N = a {(med 4}, N =3¢+ 3 (moed 7), N = ¢ (mod 19).
»\B\y the Chinese rule
3

N = —8a — 58c — 228 (mod 532).

Corresponding to five values of ¢ and four values of a, wo get 20 values of
N (mod 532);

80, 276, 360, 444, 528

181, 265, 349, 433, 517

86, 170, 254, 338, 432

75, 159, 243, 327, 523,
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Of thesc only 327, 338, 348, 360 must be reizined, since others do not,
correspond to years of the present century. The requested vears are
found & D

1923, 1034, 1945, 1956,

Ezawmypte 3. For what vears of the present century does the general, ™\
rule sniter exceptions? Exceptions take place when 4 = 29, e = 6, or

d =28 2 = 6, since M = 24, If at first d = 20, ¢ = 6, we have \
\
19 = 5 (mod 30), 2 =1~ a (mod 7), \..}
whenis ¢ = 5 and '\‘
b=4 — 4a (mod 7). \
Correspondingly \": )
Vo= o (mod 4), N =4 — 4a {mod 7}, ’\%E 5 {mad 19}
x&
and (&

N = 4370 — 52 (modbad).
Fore -0,1,2,3, R \/

N = 480, 383, 290,’1"35 “(mod 532).

Only % = 385 can be used; the Q&%@p‘éb&'ﬁi—ﬁlﬂmﬁ; mgglm If d = 28,

e = {i

19¢ = 4 (mod, 3@} 4b + 2 =1 (mod 7,

whence ¢ = 16 and \\
b =2 — 4¢ (mod 7).
Correspondingly t“ \J
AN N = 4373 + 16 (mod 532),
and for g = b&, 2, 8
N W
\*w N = 16, 453, 358, 263 (mod 532). .

Only, ‘\m\: 358 can be used; to this the year 1954 correspoads.  Thus the
fmh' réars in the present century for which the rule suffers exceptions are

\1"??54 and 1981,



CHAPTER VIII A
RESIDUES OF POWERS O
:N.’S
1. Exponent of « Modulo m. Let ¢ bhe any ainiior rela-
tively prime to m taken as a modulus. In"':}.*h(: sevies of
powers of ¢ y

L, a a% 03 ... ’,j\\; (4)
all terms are relatively prime to m an,d’:hénce are congiont to
terms of a reduced system of residues’ module m. Sin:- any
reduced system of residues cagfﬁél’ins p(m) terms, vwiereas
series (A) is infinite, there mif{]‘;t be two terms in (.}, say
a* and o, congruen”’ﬁwr\}'ié(%g m Wet can suppose | > k;
then, dividing both sideg{gf the congruence

\\‘a" = a* {mod m)

by a*, which is rélatively prime to m, we have

3
N\

\ a=* =1 (mod m).
Hence t\};@'é are positive exponents s for which
A -
J;.} a* =1 (mod m).
\Le’t}?t be the smallest of such exponents; it iz called “the
N\ gxponent to which a belongs mod m,” or simply “‘exponent of
& modulo m.” By its very definition is characterized by
two properties: first,
a* =1 {(med m);

and second, no power of ¢ with positive exponent <k is
congruent to I mod m.

222
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If 5 iz any positive exponent for which

a* = 1 (mod m),

then
s = 0 (mod k).
In faci, suppose that s, when divided by #, Jeaves the remamc{er\
r, 0 that Wwe can write ¢ S\
s W
s =hg+ 7 0=Zr<h “'\s
Then : O
AN
.aﬂ e (ah) agr \\}
and, since ¢* = 1 (mod m), ,\\)
a=a =1 (mod m}s\’
But this eannot hold unless r = ‘so'that s is divisible by k.
Nambers " N
i,a, awwﬁr dbrﬁjhbl "ary.org.in 8

xil different modulo 2 sinee the congruence

\\\{g} = g7 (mod m),
provided 5 > r, unpheq

\‘) o =1 (mod m),

'\s l

&nd this @ fupossible if ¢ < b, since then the positive number

Nt/

?‘\% cannot be divisible by k. Numbers

\~::’ N
7 \ w4
Natre congruent mod m to the terms 1, @, %, . . ., a*~* of the
series {H), Agsin,
A—1
g%, g ¥l L ,as.
are congruent to terms of the series (B), and so on. Thatiste

say, the series 1, @, a?, . . . is periodic modulo m with the

N\
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period 1, @, a2, . . . ,e*" ' Inother words, if p; 3+ ihe remain-
der in the division of a* by m, then the series

Doy Py P2, 0 0
is periodic with a period of h terrs

Poy Pry + ey Pl 7 AN

repeating itself indefinitely, O
2. Practical Rule for the Formation of Periods. ({ngruent
numbers evidently bhave the same periods of¢i¢mainders.
We can suppose, therefore, from the beginniig tiu: o < m.
Then it is very easy to find step by step\the 1uainders
i Tay « - - 5 Tmei Obtained in the divigigh of the iumbers
a, 20’1 I | (m - 1)& by /(8 Eviglé’n Iy 71 =, aeXb Te
=y 4a or rg =7 +a—m according as r; +« Im or

a2z m;again s = ry g or¥y = 1y + a — m nerording
asry+a < morry + a = mand so on.  Write the iumbers
1,2 ...,m— 1“é)ﬁ?ﬁ’(‘q'if,lf.af'zl,jb.”fry?rg;gl in two lines, as
shown here, L

L3, L, m 1

N\?:'xi Ty « v oy Py

and add a third,lide of numbers in the following manner: In

the first colugmplace that number p, of the second line which

stands bt;»l(\}i%'l in the first line; in the second columu place

that nimber p, of the second line which stands below g1 In

the fifst line; in-the third column place that number p; which

Sta-lldh below p; in the first line, and continue in the same way
<1§ntil some number g, in the third line is 1. Then

Pl b2y + - ., M

is the required period of remainders and % is the exponent of
¢ module m. In fact pL=Ti=a, py=7r, = po = al,

Py = ¥y, = pat = a® and so on, all congruences taken modulo
™.
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Example 1. Let us find the period of remainders for ¢ = 7, m = 15.
The whale procedure is summarized in the three following lines

L 2 3 45 6 7 8 9 10 11 12 13 14
¥ 14 6 13 b 12 4 11 3 1 2 9 31 8
i 4 13 1.
Henes O\
oA\
T =1 7E =4, 7 =13, 7 =1 (mod 15), < ~\
so that 7 mod 15 belongs to the exponent 4 and the period of the ‘;emam—
ders iz ~

7

1,7, 4, 13. LV
Example 2. Leta = 2,m = 27, I this case we hsw'e:

123 4 56 7 8 9101112131415161713:1&20212223242%25
246 2101214161820222426 1 3 5 7‘&1113151719212325
24R36 5102013262523191122 17 714 1

that iz, 2 mod 27 belongs to the expﬁngnt 18, and the penod of the
remaisders Is

1,2, 4,8, 16, 5, 10, 20, 18] Eé“ﬁ':l?“ﬁ”ib"ﬂ‘i}’ﬂ;ﬁﬁ*r, 14.

3. Propemes of Expoqents Modulo m. 1. The exponent 2
to which a number g aelatively prime to m belongs mod m iz a
divisor of e(m). B}xﬁulcr 5 theorem
o @™ = 1(mod m);

. N
henes by Se{i hs

i

p(m) = 0 (mod k).

The ~3L'1’§= property can be proved mdependently of Euler’s
thu\:u e, as Euler himself has shown. If the period
N\

Laat. .., (4)

represents the reduced system of residues mod m, then

= g(m) and the statement is proved. If not, then there
38 a number b relatively prime to m and not congruent to
any of the numbers (4). All numbers

b, ba, bat, . . . , bai (B)
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are relatively prime to m, different mod m among themselves
and different mod m from the numbers (4). f{n lact the
congruence

bo* = ba’ {mod m)
is equivalent to

a* = a" {mod m), ¢ \\\'
and this congruence is 1mposa1ble for two differeni unmbers
r, s taken from the series 0, 1, 2, Jh— 1. Umr‘*m other
hand, O

ba* = a' = o™ (mod m)
implies O
b = g+ (mod m)ﬁ }

contrary to the definition of b, Thué (’4) and (B) tegether
contain 2k numbers differcnt med # and prime tv . 1i
these 2h numbers form a redu@cd system of residucs mod m,
then 2k = ¢(m), and, the dﬁamrr}:amtwpwm'ed I net, then
there is a number ¢ prime to m and not congruent mod m to
any of the numbers (A)\and (B). TIn this ecase the seris

\c\ ea, ca®, . . ., ca??t (C)

containg numbérs prime to m, different mod m ameng them-
selves and d@urpnt from the numbers (4) and (B). That
the numb@:s () are different mod m among themse dves and
from ihe numbers (A) follows from s proof analogous to thab
fory the numbers (B). To show that the numbers (C) differ

_from the numbers (B), it suffices to notice that the congruonce

\‘:

. ea® = ha' = b (mod m)
implies

¢ = bar—*+ (mod m)

contrary to the fact that ¢ is not congruent to any of the

numbers (B). Series (4), (B), and (C) contain 3k numbers
prime to m and different mod m. If these 3& numbers form
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a reduned system of residues mod m, then 3k = ¢{m), and
the statement is proved. Continuing in the same way, we
concluds that the number of members in a reduced system of
residucs is a multiple of h; thaf is, ¢{m) = Af.

Frmr ithis preperty Fuler's theorem follows immediately.

N

For, rzising both sides of the congruence A o

)

WA

a* = 1 (mod m)

7%
to the power f, we get
2L >
o\
a* = 1 (mod m). O )

This was the way in which Euler himself p;lwpd his theorem,
exco pb {or the use of congruence notatioR. ™

2. it a belong to the exponent W med m. To what
exponont does o then belong? ’lo amswer this question let
us geck all the exponents z for Whléh :

(a)* = aswmwldwlhﬂal ¥.org.in
Thig congrience ig fuliil@d if and only if
e
\\‘é’x = 0 {mod A).

Now iet o be jal.{:(;fg.c.d. of s and &; then this congruence is
entirely equiyalent to

:"<:' i = E
§, gt = 0 (mod d)

,\ﬁﬁl‘( e 3/d and h/d are relatively prime, to
»\' “,

A xEO(modg)-

That is, the required exponents are

':t:=2—;t, t=0,1,2 ...
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and the smallest positive one of them is

Consequently a* belongs to the exponent h/d i ¢ = (s,k)s {N\

In particular o* belongs to the exponent k if and on'y if sjg .
relatively prime to k. ” N
3. Let @ and b belong respectively to the exponents }? bnh k,
which are relatively prime. To what exponent uvn % their
product ab belong? Let us seck exponents z sucl,kthd*

{b)* = a*b® = 1 (mod m).

Raising both members of this congrupnce\tg\the powers b and
k and noticing that

«‘ "

gh==1, bk é»l;(fﬁod m),
we get, a\"

bE= =, Jow. dbmﬁiébtt-ar;(fmoglim),

whenace

= (mmd k) kr = 0 (mod A)
or, since h'and & ar@&elatwely prime by hypothesis,
Eu\%"(} {mod &), 2z = 0 {(mod k)

~0 x = ki,

whence

where\i% an integer, Conversely, for such exponents ¢
»«\ {ab)* = 1 (mod m).

N\ Since the smallest positive value of z corresponds to £ = 1, it
is clear that «b modulo m belongs to the exponent hk. More
generally, if the numbers e, b, ¢, . , I belong to the expo-
nents a«, B, v, . , A modulo m and the [atter numbers are

relatively prime in pairs, then abe - . . 1 belongs to the
exponent afy - - - A
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Exercises and Problems

1. Derermine the exponents to which the numbers 5, 7, 13 belong for
the modnii 17, 29, 81, respectively. Ans. 16, 7, 3.

2. Derermine the period of the remainders fora = 11, m = 102.

3. Prow: that odd prime divisors of the numbers 22 4+ 1 are of the form
in + 1.

4. Prove that odd prime divisors of the numbors zt 4+ 1 are of 1&he
form &n - 1.

B. Prove that odd prime divisors of the numbers =+ & —4—‘1 are uf
ihe forre fin 4 1. A

. 8. T'rove that there are infinitely many primes of ca&{ XA the forms
dp A1, On + 1, 8 4+ 1.

T. Jf g is a prime > 2, then prime divisors of

B
\N

are eitlor p or primes of the form 2pz N Prove that there are in-
finitely :uany primes of the form 2pz K N
8. Tiihe number 27 + 1lisnot primé; its prime divisors are of the form

"H% \Xf cfbrauhbl "aTy.org.in

4, Urimitive Roots for Prime Moduli, From now on we
shall .onfine ourselvesfo prime moduli. The exponent to
which snv numbert nti:wsﬂ)le bya pnme 2 belongs modulo p
must ke a diviser of p — 1. If ¢ is an arbitrarily selected
diviser of p « \1 ‘qre there numbers helonging to the exponent
d modulo ;{P We shall see presently that there are exactly
o{d) e {{mgment numbers of this kind. At present let us
denol*iby ¥(d) the number of integers in the series 1, 2, 3,
%2 — 1 belonging fo a choscn exponent d, a divisor of
~e "1, If there are no numbers belonging to fhe exponent 4,
\t'hf'll ¢(d) = 0. Suppose that a belongs to the exponent d.

Then the congruence

¢ = ] (mod p} (4}

of degree d is satisfied by d incongruent numbers
Laa, . a (B)

\.

N



230 . ELEMENTARY NUMBER THFRORY

By Lagrange’s theorem the numbers (B) are the iy roots of
the congruence (4). On the other hand, any number belong-
ing to the exponent 4 must satisfy (4). Cenzviuently,
aumbers belonging to the exponent d must be soughi among
the numbers (B). By Sece. 3, powers of ¢ belerny fo the y
exponent d if and only if the exponents of these powers a
numbers relatively prime to d. It follows, then, that m {the)
series (B) there are exactly (,a(d) numbers belonging fo’ the
exponent d. Thus, if there is one number belongmw to d,
then there are (‘xactly @(d) such numbers; in ,Qt.he: words,
either ¢(d) = 0 or ¢(d) = o{d), so that in 3y eveus $(d)

= o(d). Now the numbers 1, 2, 3, . o= 1 heiong to

various divisors d, &', d”, . . . of p — 1{:1\ exponent-, hence
W) + 9 d) @) A+ N = p - L

But we have also ~’~” .

old) + ddﬂWW’ﬂhﬁgw oreihy, — 1

whenee, by subtlactlon,\

[e(d) — (@] + {ch*) — AN + [e(d™) — $(d)] +
= 0.

But all th :di'fferences in the brackets are nonncgative inte-
gers, angetheir sum can equal ) only if they are all equal o 3;
hcneo\ N

(d') =eld), ) =o(d), Pd) = ld”),
\ Eor all divisors d, @/, 4", . . . of p — 1.

Thus to any selected divisor d of p — 1 belong exactly o{d)
different numbers modulo p. In particular there are
#(p — 1) difierent numbers modulo p helonging to the cxpo-
nent p — 1. Any number which for a prime modulus p
belongs to the exponent p — 1 is called, following Euler, a
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“primitive root” (radiz primitiva) of p. If g is a primitive
roat of p, then powers of g

L, g.¢% ... ,9%

represent 5 reduced system of residues mod p.  The impor- \
tance of primitive roots lies exactly in this possibility(of
represeating a reduced system of residues for a prime maj:l}ﬂué.
How caxily several of the previously established thega:égns can
be derived from the consideration of primitive rog0ts one can
gee: from the following examples, \f\\\'

Since 1,2,3,...,p —1land 1, g g% DN, ¢°* are two
reduced systems of residues mod p, we }mﬁe«

A

AN w-nrt
1:2:3 - (-1=g T¥F=g¢ 2 (mod m).
Now forp > 2 .'};’:‘“
=1 SoWBdbraylibr o
o= = @ T P0G TR ),
but, A\
\“\ p—1
AN R

canno: he divisible by p, since g belongs to the exponent
- € .
p— 1; c-or;g;\qquent-ly

O p=1
N\ g 2 = —1-(modp)
&U‘d"::,
Re _g2=t
’\s./ g(P 2] 2 = _1 (modp)

for an odd prime p. As a result, we gt another and very
simple proof of Wilson’s theorem

1-2-3 - (p—1) = —1 (mod p}

for an odd prime p, and for p = 21t s evident,
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For another application consider the sum

Sa@) =17+ 204 - -+ +{p— 1"
We have again

o .__._.....,...r—-u.'..-m,.,..,—'-i—:

8up) =1 gr b g e A gen (mod gl ALY

4 \

N

Now, if » is not divisible by p — 1, g* — 1 is not div Mh}e\by.

P In this case

1+gn+g‘m+ - _.l_,g(pn—?)n_.

g “f'ﬂ._:’
g

N

4

‘\s

is clearly divisible by p, and so

8.(p) = 0 {mod p)
But if n is divisible by » - 1, then :

g = g™ T 'd]'at a’ulﬂbral # Frglinmod )
and
8.(p) = R 1= ~1 (mod p).
5. Method for Kindmg Primitive Roots. Though the
existence of primitiye roots for prime moduli has becn prov od,

the proof doeg ot suggebt any practical method for finding

the Dl'lmltwq foots in a given case. No direct method for
tihis pl\"“se is known which does not require tedious trials
when ¢the modulus is somewhat large. Perhaps the best is
baied vupon the following considerations. Let

m\.J
\

V ' p—1=adfer ... .0
be a prime factorization of p — 1. Suppose we can find in
some way numbers P, Q, R, . . . , W belonging medulo p t0

the exponents a2, b, ¢v, ., P, respoetively. Since these
exponents are relatively prime in pairs, .

PQE - - - W,
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or any residue of it module p, will belong, by SBec. 3, to the

exponent «%bf¢Y -+« - ' = p — 1 and be therefore a primitive
root. The whaole questinn is one of finding such numbers
P,Q £ ..,W. Nowif 4 is any nonresidue of the power
a mod g, we can take
p—-1 . A o
P=A4% (mod p). &
In fact W\

iy g <N
4% )" = 4r1 = 1 (mod p); @
eonsequeiitly the exponent h to which \%
1 'xi\\':
A aq x\\’
belongs modulo p is a divisor of a“ > Hence h = a* where
k £ o, and it 13 nec essary to prove ‘that k cannot be less than

a. Supposing k < a, it is clearithat a*~! will be divisible by
o, but Lien w% W dbr -aulibrary org.in

a“_ p-—l
(A =4 * =1 (modp),

which iz ummsmblp\y bec 12, Chap. VII, since A is a non-
regidue < the )ower a. Thus k& = a, and the statement is

prow-d :mml'&rIy if B, C, , L are nonresidues of the
powers &, g 4. . , I, we can take

é” p=1 p—1
QE.~’.*"*, R=C<, ..., W=L? (modp).
~ &s to the nonresidues A, B, C, ... of the powers g, b, ¢,

. , they can be found by trials, and it is important to show
that the 11umber of trials will not be too great for moderate
values of p. To this end we shall prove that, ¢ being any
divisor of p — 1, either —1 is a nonresidue of the power e
or there is a positive nonresidue less than 4/p. The proof is
based upon the following lemmas:
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Tor some positive r < \/p, a residue of N7 mu p, where
N is any given integer, numerically will be les» ihan vV
T'o prove the lemma, denote by ¢ an integer such 1l

£ <p <+ 10
and consider {f 4 1)? integers
Nz — v, N

where z and ¥ tun independently through the V\Ql‘“‘(‘ 1, 2,

., t. Sinee the number of such integerss Sgreater than p,
among them there must be at least two whgeh are congruent
modulo p. Let two such integors he \\

Ng' — ¢, _N;i:” =y,
50 that, setting 2" — 2’ = r, y'¢<" J = s, we have
wﬁrmm(&ﬂmdry}cra An

Both r and s are nunlqn(‘ally t < /p, and r is different
frora 0. Forif r A, s would be divisible by p and, since
s is numerically, Jeds’ than p, s would be.0 too. But both
equalities r =048 = 0 ave impossible, since the two pairs
&,y and(Bl’y are supposed to be different. Thus r is
diﬁeren!:,,\fi“bﬁi 0, and we can suppose it to be positive and
< \/% “At the same time the residue s of N is numerically
loss than \/f), and thus the lemma is proved. Notice that
~ ﬁhwhere in this proof was p supposed to be prime; the proof

\ JSupposes only that it is net a square,

To apply this lemma, we suppose that p is a prime and ¥ s
some nonrcsidue of the power ¢ mod p. We also suppose
that —1 is a rosidue of the power e. By the lemma there is

a positive number r < +/p such thai
Nr = § (mod p)
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and s is numerically loss than v/p. Nowif risa nonresidue,
the stateinent is proved. DBut if r is a residuc, then, since

p—=1

I’ :p_l
(Nry ¢ =N ¢ (mod p), O

Nr and « are nonresidues. If s is a positive number, then’
therc i% & positive nonresidue < +/p. If sis negative a»na, by
hypothesis, —1 is a residue, then —s will be a positiye non-
residue << 4/p. Thus in all cases either —1 is ,a;honi'csidue
of the power e or there is a positive nonresidue"’x} \/ﬁ

Thus o seeking the nonresidues of the Lojrers a, bye ...
we may try numbers < +/p, and th fhe number of trials
will be congiderably reduced. Whenu%c primitive root g is
found, the others will be powers of & Svith exponents relatively
prime to p — 1 or any remdues:of Ssuch powers.

Examgie 1. Find the least pesﬁMmﬁmwﬁymg #3.  Bineo

(_-1_2 3-7,

we may scck fiest so e\nonremdues of the powers 2, 3, 7. We find at
once that —1 i a q:{dratcu, nonresidue, so that we can teke A = —1.
Bub —1 s necessadily a residue for any odd pawer, so that to find a eubie
nonresidus wemust seek it among the positive numbers < +/43 and, as
can essily bcxgeen only among the primes 2, 3, 5. Now

"\
N 2 =1 (mod 48), 3" = —7 (mod 43);

2 8 .
hg{lfﬁ-}&l\\’e can take B = 3, Again,
\"\; v 9t = 21 (mod 43),
80 thai {7 — 2 is a nonresiduc of the seventh power. One primitive roct
is therefore
g=(—1)m.313.28 =721 = 18 (mod 43).

To find the least positive primitive root, we form the period of remainders
of 18 {mod 43) as cxplained in Sec. 2:
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{123 45 6 7 & 930111213 1415 1617 (% 1920 21
18 96 11 29 4 22 40 15 33 826 119 37 12 30 5 23 41 16 34
18 23 27 13 19 41 7403217 5 420 622 9 33 50 28 31 42

[ =]
o
o]

25 26 27 28 20 30 31 32 33 34 35 36 37 3% 3% 40 41 42
20 3% 13 31 6 24 42 17 35 10 28 3 21 39 14 52 7 25
30 24 2 36 3 1126 38 30 14 37 21 34 10 & 15 12 (B

B ool
b3 By
=R |
=0 -

1

The underlined 12 numbers are primitive roots; the least of 1'111‘\_‘[‘7\3@%3. ’
Example 3. Find a primitive root of p = 127. Here )

<Y
p—-1=2-3-.7 '\\
Agsin we can take 4 = —1 sinee —1 is a quadratie wopresaine of 127
To find a eubie nonresiduc, we try the primes 2, 3,\-'5‘,:7 ool find

240 = 1 (mod 127), 3% = —20{(Mod 127),
and correspendingly we can take B = 3. :A:é;ii;
215 = 16 (m&j}z?);
s0 ¢ =2 Finally AN
s = ORI R e

15 one of the primitive rootgl
s J

X %xercises and Problems

1. Find the leq.st;pfimitive rocts for p = 47,79, 97,  Ans. 5, 3, 5.

2. Find a puaitive root for p = 157, 587. Ans, 6, —4.

3. If ¢ is o/fhivisor of p*— 1, the congruence ¢ = 1 (mod p) has exnctly
e roote. AN6ot of this congruence which belongs 10 an cxponent <€
aatisf'ig&t’lbmt one of the congruences

SNt we=1 =l gi=1, ... (modp)

N w | . - .
\ W, b, ¢, . . . being different prime divisors of e.
4. Referring to the preceding problem, prove that »(e) distinel integers
mod p helong to the exponent e,
5. Prove that the product of sil primitive rocts is congruent to 1
mod p if P =3
B. Show that the sum of all primitive roots is = 0 if p ~ 1 is divisible

by a square > 1; and that, otherwise, it is = +1 (mod p). How would
one determine the sign + 7 '
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7. A priraitive oot for a composite modulus = would be a number @
whost P ors

1, G G2 . L., Geimimt
form a roiuced system of residues mod m.  Prove that primitive roots

exist oniy if m = prorm = 2p~ where pisan odd prime or m = 4. Hryr®
Let g be w primitive toot mod p, and let g2~ — 1 be nondivisible by p’\’

then & = g; otherwise @ = g - p iz a primitive root mod p». Alsq, forr
evary odrl number g, .
a2 = 1 (mod 2n). N
6. Ingices. Since

»
Lg gy o, NN
for a primitive root g mod p, is a reducad\system of residues,
every e_umhcr a nondivigible by p Ia (%ngruent mod p to a
power of O

= ¢ (ol D).

The extomoent » of tlus powgrwxg,gﬂti]t?lda‘gml ydglxgolfn o' and is
denoted 1 Ly “ind a,” so thats

iaﬁ g™ (mod p).

The i ton bct-'iy& a number and its index is very similar
to the relation‘hétween a number and its logarithm. For
& given o ity'iddex belongs to a definite class of numbers mod
p—1: %rg\{:}cf the ¢ongruence

N g = g" (mod p)

iS»{L;a:ési't'aie only if » = » (mod p — 1). Of course, the same
”}éur’hb{-;‘ can have various indices according to the choice of the
\IJI‘imitive root g; but once this choice is made, the indices
become determined modulo p — 1.
Between the index of a product ea’” and the indices of the
factors o and o, the following fundamental relation holds:

inci (aa’) = ind a + ind ¢’ (mod p — 1).
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To prove this, it suffices to observe that by definitivy

a=gne, @ =g (mod p)

whence
M’ = giuda'i"i.ndu" (mod p). 2\
Since, on the other hand, OV
| ¢’ = g ) (mod p), Ke
we must have N

ind (aa’) = ind ¢ 4- ind @’ (mod p — 1)'\\“

This congruence can be immediately cxtended\gany number

of factors A
$
ind {ga’a” - - ) =ind ¢ + ind al,&ihd ¢ + - -
and in particular $,

/
Y No

ind (¢} = nind ¢ (mod p — 1),
T. Application of Iudx&esbteu:ﬂie “Bplotios of Congruences.
Consider the binomial congmence
&5 a (mod p), (4)
where a is a number\nondl\rlblble by a prime p. Taking t -he
indices of both numbcrs, we have
\ % ‘ind 2 = ind ¢ (mod p — 1}, (B)

which 1\a\tnngruence of the first degree to detcrmine the

unkno‘q? index of «. If this '(,ong"ruence has no solution for
ind. &p3the proposed congruence (A4) is impossible. Let 4 be

t{lg,greatest common divisor of # and p — 1; then the con-
Ngruence (B) is possible if and only if

ind ¢ = 0 (mod d),
which is entirely equivalent to

—1,
P~ inda=0(medp — 1)
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or
p—1

a2 =1 {(modyp), _ (!
since numbers with indices congruent fo 0 mod p — 1 are A
congrucnt to 1 mod p.  Congruence (€} is thus the necessary
and sufficient condition for the possibility of congruence éfl)\
This esniition being satisfied, congruence (B) gives d d)ﬁt‘;nct
values fov ind z mod p — 1, to which eorrespond d~dgstmct
roote modulo p of the econgruence (4). 9,

F 4
&/
Thus ihe congruence NG

77 = a (mod p) N
\\
1 (mod p),

and, if this condition is fulﬁlla‘d %t has exactly d solutions,
which ean be found by solvmweré'%l cpgruence of degree d.
Congruerce (B) can be nntten thas: ey org.m

{}\m,& 1_13@_ 8 (mod p—;;—l) €2

Q \p —1 md z=0 <m0d —E—l) ()

iz possible only if
p—1
a

il

Moreover,

”\x \" d

Smce«q\z and {p — 1)/d are relatively prime numbers, two
pmﬂtgu integers u and v can be found by solving the inde-
tel*mmate equation
N\ W

d d
Multiplying both members of (D) by » and subtracting ()
multiplicd by », we have

—1
indz = u Eld?qu (mod P—d——)

» = 1.



240 ELEMENTARY NUMBER THEORY

or
dind z = »ind & (mod p — 1),
whence
¢ = g* {mod p),

and this is the congruence of degree d, giving all J solntions

of the proposed congruence when the latter is possibie. KM
« \J
Example. Consider the congruence (uf"
x5 = 2 (mod 43). QO
£ A\
N’
Since (15,42) = 3, we must see whether the condition
% w

21 =1 (mod 43) '\’g.
is satisfied ornot.  Sinee it is satisfiod, the proposed congraenas: huts three
roots which satisfy a congruence of the thirg“degree. To find 110 con-

gruence we solve for w and » the equation,”
«\" ‘- .
wwwivd braiihibrary .org.in

and we find v = 3, » = 1. (\i‘(msequent].y three roots of the nroposed
congritence satisfy the congryence

Y \\ z* = 8 {mod 43).

A nuwber g forswhich the congruence
"4

A

:j‘{“: z* = g (mod p)
X"\." .
18 DOSSI}S@%S a residuc of the nth power, If n divides p — 1,
the gandition for a heing & residue of the nth power is
,..\i W —1
N/ e " =1 (mod p),

which was found in a different way jn See. 12, Chap. V1L
If n docs not divide p — 1, but the g.e.d. of p — 1 and n is d,
then the condition for @ being a residue of the nih power is

b
s

bl
a? =1 (mod p).

|

N
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That is, «li the residues of the nth power are residues of a
smaller power d. Consequently the theory of residues of
the nth power presents infercst only when = is a divisor of
p — 1. ‘T’hus there is no special theory of cubic residues for
prime nuwatuli of the form p = 3n + 2;In this case all numbers
are cubi: residues. Also for primes p = 4n + 3 the theory,
of biquadratic residues coincides with the theory of quadratic
regidues. : G\

8. Tables of Indices and Primitive Roots, Af ibc ¢nd of
this bouk one can find tables which for all primes npfexcecding
100 permit one to find the index of any givemwiumber and,
eonversely, a number corresponding to a giweén index. The
largest collection of tables of indices fo ’ah primes < 1,000,
the “Canon arithmeticus,” computadnder the direction of
Jacobi, was published in 1839, Thér«é arc extensive tables of
primitive roots. One such t.aplje’,: riving the smallest primi-
tive roos for all primes < 6200, can be found in the book
“ Anfanuzgriunde der ZahlenE%e?g&?%%ﬁ%raﬁ%ﬁfﬁﬁnm.

When we have a tabléf indices, the solution of binomial
congrunsces does not pequire anything but the solution of
congrucnces of the fibst degree. Tor instance, if we want to
find thrao roots. 6 the congruence

Q)

’\ZZ'\ 2% = § (mod 43),
we re‘.]_g%z-{i":gfht-his congruence by the congrucnce of the first
degros;
,\'ff" 3 ind z = 3 ind 2 (mod 42}
'ntn:.“ 3
Y ind & = ind 2 (mod 14).

Now in Txample 1, Sec. 5, we have a table of indices f?r
P = 43 corresponding to the primitive root 18. ¥rom this
table we find ind 2 = 27; hence

ind 2 = 27, 41, 13 (mod 42).
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To indices 13, 27, 41 correspond, respectively, 29, 2, 12, so
that the roots of the congruence

* z* = 8§ (mod 43),
whiéh are the same as the roots of the congruence O
z15 = 2 (mod 43), KoY
are O
= 2,12, 29 (mod 43). A\
Exzercisés and Problems ' <§:"

1. By means of the table of indices, solve the follow'ihg’ CONETINICes;
{a) #* = 46 (mod 97); (B) 27 =5 (mod T1}; \(a) T = 2 (med 89).
Ans. {2} 20, 21, 56; (b} 10Q, 15, 18, 24, 36, 54, 58} ‘éc)' 9, 1149, 23,

N\ +30.

2, Solve the congruences . AV

)

(@) z% = 55{mod 73); (b) 2"‘ = -3 {mnod &7).

Ans, (g} £13; +14, +186, %’i}'-‘-ﬁ +11 =51,

3. Denote by (ind a)g‘ﬂ‘f@”ihgj dpgaplib a!ll".}g a grlmnwe root g is chusen
as the basiy of the system of dices. Bhow that In two systems with
bages gand v, indices of thcaéme mimber gre conneetad by the cOngrc uce

{ind a}xx (md a)(ind g)y (mod p — 17,

4, The index of a wimber @ belonging to the exponent ¢ is a multiple
of (p — /e Shmv that a prumitive root can be so chosen that the
index of o w;dij(‘ oqual to (p — 1) /e

B. Ar%i?g}t-hc roots of the congruence

“\ d — | .
R z¢ =g (mod p)

t-hj{rg‘{zre

~\J olp — 1)

\ ofP 3
od
primitive roots if ¢ belongs to the exponent p_;__ mod p.

6. If a prime p is of the form 6n + 5, the least positive residues of the
numbers

19,258, ..., (p— 1)
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coineide in their totality with 1, 2,3, . . ., p — 1. For primes of the
form Gn -+ 1, cach of these rexidues repeats itself exacily three times.
7. Sheww that the sum of the cubic residues in the series 1, 2, 3, . . .,
p—1lap(p —1)/2ifp =5 (mod 6) and p(p — 1)/6if p = 1 (mod 8).
8. By counting lattice points in the area bounded by the lines y* = pz,
y =1, y = p — 1 (including boundary Lines) in two differcnt wayss

establish for an odd prime p > 3 the identity ) ,\\~
N
(VP + 1V 28+ [V + - [V - 1l O

= ilp —~ DBp* TJ?P ¥ 6).

9, Find a number written in the soale of seven, wﬂ{?}ss thap 40
digits, such that if the digit 37" is moved from its 1¢ right 1o its
-extrems left, the result (still in $he scale of seven)\;%g' of the original
number, 155 4(7% — 1)

i
¢/

’ 4 w
R
£ )
<
A0
4
O\Y
Nl
=N



APPENDIX A

ON CARD SHUFFLING .

< 3
1. A simple, though not easily practicable, wayot shuffling

and placing the cards of the first (upper) halfbéiwe
tive cards of the sccond half, the last ,@éﬁs\i’ of the |
oceupying the position at the bottdm“@f the pack afbter shuf-
fling. Thus if eight cards from thel tep down are deucicd by

"3

1 2 3 4356 7 8
the position of the cwndw.dﬁg&iﬁrﬂiingtwiﬂ be
5 1,482 7 3 8 4
The problem with, whigh we shall deal here consists in finding

the position of a-pﬁven eard after any number of shufifings.
Let the cards .ixﬁthe original order from the top down be

A K
M2, .t Let2 L 2
Afwr{ﬁﬁ,ﬁﬁﬁg, eards 1, 2, 3, . . ., » ocenpy the second,
fourthy® sixth, . . ., 2nth places, whereas cards n 1,
382, . .., 2n occupy the first, third, . . ., (2n — 1)th

”\iﬁta:ees. Let some card occupy place #; before shuffling and
N 'place . after shuffling. Then, by our previous remarks,

Ty = 23..”]_
if #; £ nand

1:2:2331—2?1'—1'
i #; > n. Inboth cases we have the congruence

2z = 2y (mod 2 - 1)
244
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which, because 23 < 2n + 1, determines 2, completely and can
replace the two expressions for z, which have a different form
according to the value of z,.  If the shufilings are repeated in
exactly the sume manner and the places oceupied by the chosen
card after the second, third, . . . shufflings are =3, 2, . . . ; O\

H
then in the sameo manner we have N
O\
~e
23 = 2Ts, Te= 225 .., Zrg1 = 2y (mod 2n 4\D),°
. N

N

whence, by successive substitutions, N
Tppr = 2%21 (mod 2n 4 1), W\

This congruence solves the problem of ﬁn{{ng the position of
any chosen card after any number of shuffhrigs.

Suppose now that after & shufflingssthe first card returns to
its original place. Then .y = x; &)1'and

2* = 1 (mod 2% + 1),
which shows that for any zs  *¥w-dbraulibraryorg.in
Thyy ENEL (mod 2n + 1);

that is, o, = 1\Ezlf cards return to their original positions
88 soon as the Mwst one does so. The smallest number of
shufflings rogtohing all eards to their original positions is,
therefore, ihe’ exponent to which 2 belongs mod 2n + 1.
Now forgmivordinary pack of 52 cards, 2 belongs to the expo-
nent.éﬁ(hﬁmi 53, and so 52 shufflings are required to restore the
orden,of the cards.

(2. Another interesting but less common way of shuffling

N Jards consists in taking the top card in the right hand and
placing other cards alternately above and below it. Thus
cards 1, 2, 3, 4, 5, 8, 7, 8 in the original position are placed
after shufling in the order 8, 6, 4, 2, 1, 3, 57 In general,
cards

1,23, ...,2n
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in the original position are placed in the order
m2n—2,...,421,3,5 ... ,2n—1

‘Leb the original position of some card be xy, and let x5 be
its position after shuffiing. Then if %, is even, it cecupies tie

plaee 21/2 from the beginning of the series 2, 4, . . ., 22'and
n - /2 + 1 from the end, so that o\
m:n—':ﬂ'i‘l. ."f 3
2 41 \ m\
If #; is odd, it occupies the placc _-2—~ from the heginning of
the series 1, 3, 5, . . ., 2n — 1; conseqﬁent-ly
Iy = n + L-g-—l

The formulas for %V\lgp}fbgmréﬁf,eaﬁgtnfor an even and an
odd 21. Yet they both tan be cxpressed in one formula of
slightly more comphc@kpd strueture:

2_\s-( EIIRELT R

and this m’t‘tﬁ‘n ean be replaced by
\{\ \2(2x2 — 1) =(-1}5"*2x — 1) +4n + 1
on @ & cougruence
\Q\, ' 22z — 1) = (=)= (22 — 1) (mod 4n + 1},

which determines 2z — 1 completely as the least positive
residue of {—1)=1(2%; — 1) modulo 4n J- 1. Pluces oceu-
pied by the same eard after the second, third, . . . shufflings
will be denoted by x5, 2, . . . . Putfing for brevity

2‘-?3{—'1=Ug,
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we shall have the congruences

-1
vy = (—1) £
vy = (—1) 2 » . _ N
.......'-'..- ‘t‘\\.
tyo-1 ] : o\
Qv = (—1) 2 w; (mod 4n 4 1) O

whence, after climinating vs, s, . . . , o, P

A
2y = (—1)% v1 (mod 4n + N
where \
0\./
- i — 1
a::?—l—~1+ R

% 3

a7

Now, if after k shufflings the first ca.rd is restored to its original
position, ¢, = v; = 1 and ,:.;'«
- ’WWW dbraulibr orgi
% = + 1Namod 4n Jprary.org.in
At the same time ally ﬁxe cards will return to their initial

posttions, for then \\
‘an+1 = + (mod 4n + 1)-
U,

The sign —*\mnnot hold in this congruence; otherwise the
aven DH&B‘B] i + veyy would be divisible by 4n 4- 1 and so
W ould 4(#1 + #.y). But this is impossible, since both
31 an{lw‘:«ﬂ are less thau 4n.  So in the preceding congruence
t{re sign -+ must hold, but then #4; = b1 and T = L _fOT

¥ eard. Thus the smallest number of shufflings restoring
all cards to their original order is the smallest exponent £,
such that

2 = +1 (mod 4n 4+ 1)

without specifying the sign 4
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For an ordinary pack 2a = 52, 4n 4+ 1 = 105, and mod 105

2t =2 2 = 4 2 = 2 5= 1
25 = 32 2¢ = 64 27 =23 2
=13 P0=-2 20=53 2

Thus 12 shuﬂilngs by this method suffice to restorg %}w
original order of the cards. K

46

(]
I M

Q\\X
NN .
N
@
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CHAPTER IX

ARITHMETICAL PROPERTIES OF -

BERNOULLIAN NUMBERS \

1. Origin of Bernoullian Numbers, The following fc-rmulas

well kiilown since remote times, £ "5

g 22 oz
.}+2+8.+."°+(x-—1)-—2——§:\
' %
123 +(a=~—1)~°-;\;2 -
o . 13+23+33+ (m_l)f!é%_.,% E_J
express the sums ’:':.

8, (.15) = 1r + 2“’«ﬁfﬁ;w dbr ad_llgl'aly drg.in
for n = i, 2, 3, as polynamialfs in z of the respective degrees
2, 3. 4 with ratlonal,\"('\i)eﬁiments Jacob Bernoulli (1654-
1705), the eldest s‘\xilier of the family of Bernoullis, famous
in the history ofymathematics, made the important discovery
that for any, pogltwe integer n the sum S.{z) eoincides, when
T is an 1nte§er~, with the polynomial

1l nzm! n(n — 1)(n = 2) x~° o
n‘]—{\ +Bll g B2 4 * '
tl\& 185t term of which is .

RS ©
\\' (—1)72-1B,, & or  (—1)*92 nBpyme

2’
according as n is even or odd, and By, By, Bs, . . . are the
rational numbers :

1 1 ~ D S L AR
B, = 6,_82 = 30 By = 42! By = 30 B 66’ '

249
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determined one by one in & recurrent manner. These num-
bers, in honor of their discoverer, are called Bernoullian num-
berz. They play an important part in analysis nnd possess
remarkable arithmetical properties, the principal of which we
ghall consider in this chapter. \

2. Definition of Bernoullian Numbers by a Symbulic
Formula, The Bernoullian numbers are introducedsin ‘the
easiest and shortest way by means of a symboligggfz?hod of

Blissard and Lucas. If a sequence of numbers bepdy, % . ., ba
gatisfies o linear relation ~\
cobw + by + - 0 - + Cn—lfh\—jr Cn = U,
{N

we agree 1o write this relation symbpli}sélly thus:

¢’ N/

) = eob* + eib ™t + (¢ ¥ eud Fow =0

on the condition that one rgsfrl[@g}as any, power B by by
It is evident that PRy {40 SSymbolic relations

fO) = G 4 - - F o =0

dwig&+mwﬁ+---+¢=o
imply \

@ 10 * o) = 0,
For, p%?fﬁig’%o the nonsymbolic form, the last relation becomes
A&E dba + (o1 & ddbus 4+ 0 e+ da =0,

'"\aﬁ‘d 1t is a consequence of the two relations

N

V Cobn + Cibumy ¢+ ey = 0
dibn + dibo + - A dy =0

which are supposed to be satisfied.

If two polynomials F(x,b) and G(z,b) in indeterminatos
z, b are equal,

Fz,b) = G(z,b),
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this relation will remain true after we replace cach power & by
b.. To prove this, we observe that F(x,b) and G(z,b) can be
arrange: in powers of b as follows:

#lz, b)) = folx)b + filz)bt o0 - G fu(z)
Gla,b) = gu(@p™ + (@bt + - - - + g.(z),

and the equality '\‘ “\
Fla,by = G{z,b) O

means that the coefficients of like powers of b are.‘:iden.tical
polynomials in x, so that \,.‘:\."

S = gx)  dor - i=0,1,2 W,

x'\\.l
But then it is evident that '\2
fu(:r')bn "{_ fl(x)bn—l + ) + fn(x) i gtl(x)b + gi(x)bn—
R\ + 0+ gﬂ(x}

regardloss of the values by, be, 8-, ba
After these preliminary reﬂﬁ‘i’ﬁ*ﬁh&ﬂldeﬁnm xlwgiaquence of

numhers by, by, bs, . . b{ the symbolic formula
(?er- =5 =0 - {4)
forn > 1. Takifgn = 2,3,4, . . . , wehavein nonsymbolic
forin \/
N 261 +1=0
\*\, 3431 +1=90
O 4by + 6bs + 4by +1 =0
XN .
"“@"e\«nce
D S WA R S5
! 2T 30
Thus, the symbolic formula (4) forn = 2,3, 4, 5, . . . serves

to define an infinite sequence of rational numbers b1, b2, by,
by L.
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By Taylor’s formula we have for any polynemial f(z)

fe b+ 1)~ &+ 5 = @+ b+ D1 ) (2
TR LR S A

identically in the indeterminates z and b.  If we J‘:rpla.c'e‘here

each power B by b, and take into account theg it‘ymbolic
equation (A4), we get the fundamental symbolic { 541’1‘1}1.1[34

feb+ ) —je+ b =@ B

This idenfity in z will, of course, remain tggo after the replace-
ment of the indoterminate by any Qéﬁl cr, In particular,

taking £ = —1 and f{z) = a7, we abtain another symholic
formuls

- b- 1}” ’== (*1)““?%
which, when added“}:\g‘.{z&}nmﬁ!mbbar}bgrgﬂémber, gives
b4+ —0 -L)“ = {—1)*In for n>1. (€}
For even o = 2 {hls amounts to

Cﬂkb%{cfl:"' Chbu s+« + + 4+ CEDy = —k;
but' ("Bk—lbr &'z‘—‘k and BO

\C%hm sk Chbyg 4 - - 4 CBShy = 0
fm;{»& 1. Takingk = 2,3, 4, - - - , wo have
:..\i?;" 4hy = 0
\.»\ o 6b5 + 20b3 = 0

8by + 56b5 4 56bs = O

whenee bs = 0, b; = 0, b; = 0 and, in general, bx_y = 0 for
kb >1, Asto the numbers

¥

_ 1 _ 1 i
b%“ﬁ, bi”‘"%, bﬂzﬁ"",
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the industion shows that they alternate in sign. The general
proof of this fact is not quite easy and will be given later,
Assumning it to be true, the numbers

(— 1)1y
fork = 1,2, 3, . . . are positive, N
- . &
We define the Bernoullisn number B, by P\ N
W
= {—=1Y"Thy, (&

Taking n = 2k + 1 in (), we derive easily, ~Qhe followmg

recurrence formula to determine B, B, Ba, "N\

Cgk_p Oﬁ}c—}—lBZ + Czk-HBa - 7 K(\ )k IC§§+1Bk
s ) = .IC A 1
whenece, without mueh labor, OI‘PB ca:n form a small table of
Bernoullian numbers: \'w
* wWw dbraulibr ary.org.in
B _ L e B. — 691
R\ ® T 2,730
¢(\J1 7
Bsgm  Breg
AN 3,617
Ny E S L
2o 1 43 867
O Bisgp B
O Bo_5 g 174611
AN * 7 BB T i)
~O
\ 3. The General Expression for the Sum S.(N). Taking
=01, 2 , N —1in (B) and adding the resulting

symbohu relatlons we get a rpmarkably simple symbolic
expression of the sum

FO 4 FQ) 4 - SO =) =N +b) — J(b)



254 ELEMENTARY NUMBER THEORY

good for any polynomial f(z). In particular, for

xn-{»— 1

-1

f(z) =

we have

SiWy=1"4204+ - - + (N - 1)
R s +"f\

nt+1 A

N
and for » = 2k, passing to the nonsymbolic f@rm snd intro-
ducing Bernoulha,n numbers, NS

\ 4

(D)

_ N+l _ v N3
=5 2 "t (-1 IB;J{:F( DF2C3Be i

N§ p A1
+ (“1)k"30%k3k—2€ + ¢ O -i- O 231% - ()

For instance, for & ;(;w%,_éb%;j‘]ibrary.org.in

N° (N N N
\— = i . .
BN =5 8%t s
\.' 5
5:) 3&‘ LA LA
% ~ N3 9N7 TN  2N® N
ﬂ(m sty -1 te W
4 \Eroof That Bernoullian Numbers Are Positive. This

pxobf is based on evaluating the sum of the nth powers of

~C ~gumbers contained in the following table

Su{N)

A% 1] 2| sleeeeeee N-1
2 4| Bl ———— 2(N-D
R e e—— 3IN-1)

N-1 2N—1) BIN-1) N-1{N-D
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in two different ways. Summing by rows, we {ind, as a resuls,

T dr b2 A (V= 1 20 o 20
WD A N e
FN =D = (2 R (V- 1M

On the other hand, numbers of the table can be arranged(in’
N — 1right angles, asshown.  Sinee th( sum of the nth pn%erﬁ
in the ¢th right angle is

2r(i + 2% b - - (5= 1)) +1.\,\.

’s

"

another expression for 2 is
¥-1 2>

= St = 1)) i,
i=1

\

s W
R

and ou equating both we get ‘:.’:"‘

N1 W‘w dbr aullbralyorg in
> (21 + 27 + + @ — 1)} +i%]
i=1
g(p F2h o W=D ()
By (1) \\
n £ L - (i +fﬂtﬂ - )
T . R0
or, in exp@m fed form,
Q, n—1
aﬂ_a..l z'ﬂ"‘-k
1"\~§f2"+ G- = +1‘_+ECI’W BT
£ ) . . =1

Zn41
Bir(in v o 4 (G DY)+ ?Jr i

2k
ot QEC:?I’W BT

k=1
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Again, by (D)

N-1

2[21:“(1“ +20 4 - = 1)) 2

i=1
n—1 )

= L bnaV) + 2 O™ “ii(&

k=1 Y \. '

where _ N

" 20 (N — U= qb,.,(‘j,l
and so by (F) \ \

7

n—1

1¢.n+1(N +2> Okbﬂl‘i’;"z(} = (¥ @
for every positive integer N. Con31der111g N not az auwinteger
but as an indeterminate, both me:mbers of ((7) are polmwmlals

in N. These polynomlals&b,emgb%g loi ndV = 1,23,

+

kel

~ must be identical, and cocflicients o 11ke powers of Ninl )Oth

members of () musi e\equal.
Let ns compare oti'i\ cients of N2 1In the left-hand sidc
the coefficient of

2,&
\ﬁ_,_lbzn +2k +1Cbk+1sz_

In !;k{e}ﬁ'ght-hzmd side it is bﬁ, and consequently

‘s.':;. =1
e N 2n 4+ 1 2n —
‘C‘“ S FT b?u + % ET C tDr1lonar = DE
ka1

or, separating the term corresponding tok=mn—1,

2n 1
o :1 Q2m + 2 F 1 C bk+lb2n-.k—1—- -—an

k=1

N
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We can drop even values of k, since then by = 0; setiing
k = 25 — 1 and distinguishing cases of even and odd =n, we

have
ln—2}/2

n A 1, 2n — 23+1 251 — —nb? N
_ﬂ_“i_ 1 haa + E Clhyehan a2, = —nbl, n even,

=1 SO\
and P~ W
{n— 1)/22 25 4 1 W W
2?% _|— 1 " — i__ __Tfr2-1 4 N
n 5.!: 1 .b““ + E - —8 Cﬂ bisb?.n—-ﬂs ": 0 h Odd
s=1 N\

Assuming now as established that (—1)*ther > 0 for s < n,
these two relations give (=1}, > D'\aﬁd go it iz shown
that the Bernoullian numbers are posity .

b. Staudt’s Theorem. In formulaXX), Sec. 3, we choose N
divisitle by the denominators of ‘the Bernoullian numbers
By, By, . .., Biosand also bg 9, 3 b3, . 9% + 1. Thenitis
clear (hat the difference raulibrary.org.in

s (—1)1Bs

o’V xF
\\
is ap integer, @mpthe other hand, N is divisible by all primes
a, b ¢, .. Dateh that
A& 2% 2% 2%
~ a—15—-1¢—1
A\
AN Antegers and by the theorem proved in Sec 11, Chap. VI,
N\ :
" Su) 1,1 1, ...
N\ —w  Tzt3 +3 +

is also an integer. Consequently

1 S TR
Bk=G+(-—1)k(a+g+E+ )



258 ELEMENTARY NUMBER THEORY

where ¢ is an integer, This is the famous theorem of Staudt,
which can be stated in words as follows:

The fractional part of Bernoulli's number B iz cqual to
(—1)* multiplied by the sum of all fractions 1/p where p is 8
prime and 2&/{p — 1) an integer. For example,

N

&
By= —14i+s43 Bi=6+tg+iti +\

Notice that 2 and 3 occur In the denommator% of ‘all Ber-
noullian numbers. Also these denommatqm\{onllmn ouly
different primes. v

6. An Auxiliary Congruence. To haygdormula (¥} before
us, we write it down again: (V

~ 3

241 3
Su) = gy — g +(-1)*’"BLN+(—1 yrChB f
Nzi—1
W, dblaﬂ'[lbralycijfgqm BlEk (E)

Consider a term ”
\N Nz
CH B
’\" +1 = N¥CeiBrig F1
with ¢ > 1, and let p be a prime which divides N and possibly
the denomindtor of By ; and 24 + 1. Tt 2t + 1 = 3%, ¢

DOBleSlbk’ by p and ¢ 2 0. Then the denominator of the
frac’n{n\

\; By
AN 264+ 1

\ “\“tontaing p in the degrec a 4- 1 at most, and p occurs in the
numerator in the degree 2¢ — 1 = pog — 2 at least. Now

Pe—2z2za+41 ar P = g+ 3

in all cases. Forif @ =0, then ¢ =2+ 1 > 3. Ifa>0
and p = 5, we have already

5 > a 3.
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Likewise
: 3*>a-+3

if a = 2, and the eonclusion is true for p = 3. Finally, if
1p~3 then ¢ = 5, q1r1093q~2z+1>33ndq15“\
not divizible by 3; but 3 - 5 = 15 > 4, Thus the fraction

~ Ko
NQ';\ \ ot
23—'—1 % \J

~

QO
when reduced to its simplest terms, has its dengripator rele-
fively prime fo N provided € > 1. As to the ﬁrgfe}ion

B k—tm s 1 1

Bk—-l%’ P ".\\';

its denominator, in reduced form, Gannot contain any prime
which divides N except 3 in thq first power and then only it ¥
is divisible by 3 and not by 9 ~Fé%ally the fraction

rauli I‘a]_y' org. in
N"k—-s

“ ;
RO
in redueed form, ha@\ﬁjé denominator either 1 or 2.

From this dlscusswn it follows that under all circumstances
the sum of al1¢grms excepting (— 1/ 'BN, in the right-hand
side of (EX},\eeJn he presented in the form

\}"\"~ R
W 3
R\ N &S

»\ Eﬁre § is relatively prime to ¥ and ¢ = 1, 2, 3, or 6. Thus

\/
Sgk(N) = (——l)kHIBkN +- N2;'S

Now let ug set
Py

Bkza;’
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with relatively prime P, and €, and let us mulliply both
members of the preceding equabity by @« Noticuiyg that @,
is divisible by 6, the result can be presented thus:

(— 1) 2Q8u(N) = PN + N'zz’

where T and S are relatively prime numbers and S 18 ‘Jrlme t?)
N. But, since O
T
_ s \ 3
N 3 \ \
is an Integer, 8§ must be equal to 1, and so
(=1 Su(N) = PN —[-rQV’ZT
or
(=172 QuSu(N) = P:@N (mod N,
a remarkable congrucnce holding? for smy integer N.
7. Another Auxiliary Congruence. Let a¢ be any number
prime to N, ¢, and thhél?éﬁf&l‘é‘tﬁré’ Gitlent and vemainder
in the d1v1810n of sa by M\ =0 that

D {»‘\ 54
sai\Nﬂg, +r L= Fl
Raising both mija%ﬁbers of this equality to the power 2# and
neglecting t_&;rmé divisible by N2, we get a congruence
\\ a%g? = p% 4 2ENgr?-1 (mod N2)
or, am% ry = s¢ (mod N),

T, Y
3

NN a¥s¥* = % 4 2ENa¥~1s%1g, (mod N?).
\Tahng here s =1, 2, . .., N — 1 and remcmbering that
LIS VI & PRI ¢ Chffer only in order from 1, 2, ., N -1,

we get, after summation, :
Nt _
(% — 1)8a(N) = 2ka2"*1N232"_1[%] {mod N%).

=1
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Thiz is the second auxiliary congruence which we need to
establish a theorem, remarkable for its gencrality, discovered
by G. Yoronoi in 1889 while he was still a student,

8. Varonoi’s Theorem and Its Applications. On comparing

both suxiliary congruences, we get Q
-1 A
O\
Nla* — )P, = (_1)&—1NQ,,2M*—IESEH[§N‘5] (od Ny
. §=1 ,,’: :

.
< 3

or, dividing both sides and the modulus by ¥, { o

N-1
N\
(2% — 1)Py = (—1)"2ka®~'Q; Esﬂf.\lf-}?] (mod N).

Qﬁ}’

This congruence holding for an ‘atbitrary modulus N, ¢ being
relativoly prime to N, consfitutes the theorem of Vorenoi
Many interesting properﬁ}agwo\f“ﬁ’éﬁ%m!mw-?ﬁﬂﬂbers follow
ag easy corollaries from¢this theorem,

I the first placeswe shall prove the generalization of a
property of the m\f'né’rators of Bernoullian numbers obser*a‘red
by the famous adronomer J. C. Adams during the preparaiion
of his valuahle table of the 62 first Bernoullian numbers.
Adams obsierired that, whenever & prime p dividing % dees
not entéer“into the denominator of Bernoulli’s number B,
it dw&ea its numerator. Let p* be the highest power of p
dividitiz %; then, taking N = p* in Yoronci's congruence, we -

~JBave
\ 3

(a% — 1)P; = 0 (mod p*),

provided « is not divisible by p. Now sinee p does not enter
in Q. by Staudt’s theorem, 2k is not divisible by p — L.
Then, if a is a primitive root of p, a% — 1is not divisible by p
and conscquently P is divisible not only by p but by p~.
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As another application we shall show that

a*i{g®* — DR,
2k

Is an integer for any integer a. Let 2kQx = LM be a T actorizgh,
tion in which M is relatively prime to ¢ and all prime fgigtqm
of L divide 6. Taking N = M in Voronoi’s congruenge, we
have AN
(a® — 1)Py = 0 (mod M); A
that is, A4
(a* — 1)P,

A
is aninteger. Omn the other hand, let pdheany prime divisor of
L which enters into & in the degree B2 0 and into 20 in the
degree 2 at most. Then p entes.into L in the degrec not
higher than 8 4+ 2. Since p divides g, it enters into o+ at
least in the degree Purte-d.dbBORbrary org in

EN1z8+2

since already O

T rze4a
for 8 2 0. Thus,

A Ll
o L
. . ‘"\Qt
is an pﬁ\\teger and consequently
o\ FH(a® — P, _ atti(e® — 1)B,
\"3 ' LM - 2k

N\ is always an integer,

9. Fractions mod m. Kummer's Congruences. By a
fraction a/b mod m, whose denominator ¢s prime to m, we agree
_to understand the unique_solution mod m of the congrucnce

br = g (mod m).
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From this definition the following properties of fractions mod
m can be derived without any difficulty.
1 The congruence

f—; = %; (mod m)
is satisfied if and only if @b’ — a'b = 0 (mod m). In particdlar’
R .”\\ o
! ’\n :
% = %— (mod ™) PAY g
if ¢ == @, b = b (mod m). Thus, for exampl@f«%Sé 14 (mod
7). \ ¥
2. The fractions AN
g, 0 acdf
b4 baJ)

modilo m are equivalent to the fi‘actions

ad ﬁnﬁﬁw de%,]lhl.a]“_y org.in

" bd
whether in this or rogu\sed form. Thus
2 1\ 6 11
—=-—Afmod 7}, ='-g=-x== 11
FT3=3 J(mod 73, T = 4 (mod 11).
) NS/
3.0 \xj\“' )
a_4, L
. \\z 5= a7 (mod m},
them) ™
;:\;’* g+c__=a"+_c: Ele—a"r:(nmdw.t)
Q bTd- V& pdWd

4. Tet f{z) be a polynomial with rational eoefficients whose
denominators are prime to m, and ot « and § be two eongruent
integers mod m, then

f(e) = f(B) (mod m).
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. After these preliminary remarks, we turn to the dorivation
of the remarkable congruences involving Bernoullian numbers
and discovered by Kummer.

E. E. Kummer (1810-1893) by his introduction of idesl divisors sz
achieved perbaps the most significant advance in the theory of numbers
since Gauss. His deep investigations of eyelotomie fields with splen@id
applications to higher reciprocity laws and Fermat’s last theorsm, of
which we shall speak later, opened the way to the creation ol the ¥éneral
theory of algebraic numbers by Kronecker, Dedekind, and Zalotareff.
This was the most splendid achievement of mathematigal gicnee in the
nineteenth ceniury. "‘\

Let p be an odd prime, p = (p — 1)/2, @nd % nondivizsible
by x. By Staudt’s theorem the denm\nﬁxators of the Ber-

noullian numbers : O
_Bk-{’-n‘;.: .' WV
are prime to » because &Y
ka{-d%-guhbkary org.in
P 1 te

is not an integer, Consequently, if & 4 ou happens to be
divisible by p*, by*the generalized Adams theorem Py, will
be divisible by g#and the fraction
.\Q > Bk-w;:
& k+ 0';.;
reduu.éﬂNo simplest terms, will have a denominator prime to p.
When writing this fractlon we shall always mean the cqual

mfrantzon in simplest terms. Let p* be the highest power of p
. by which one of the numbers

B4 u b+ 20 ...k 4+ ap

18 divisible, s0 that in none of these numbers p oceurs in the
power > g. Now denoting by a a number nondivisible by p
and taking N = p™ in Voronoi’s congruence, we have
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(_I)k_l._}.g»(a‘lk‘]-o'u’“” _— ]_.)Pk+g1f.

pre—1
= 2(& -+ o,“)ka'asz—n—l 2 3”“““’“"”[—%] (mod pn+ﬂ),
- P A
whence, fore =0, 1,2, . . ., %, O
. B ;"\\
(— 1)h-Fron(gdbralp—t) ]_) Dhtan \
; b ou (N A
prte—1 9
= Qg+oin—1—1 E g—1tep—1 {,‘%ﬂ_] {mod p*),

s=1
ANY;
N
the loft-hand side being interpreted, \Qs a fraction mod p™.
This congruence can be further s1mphﬁed by a suifable choice
of &, We shall take

»‘1
L

a = 4 ’:(rnﬂd
e w‘ww dbrau]lhl "ary . ot
denoting byva przml’(we Yoot mod p; then, by Fu%er 8 theorem,

a? Y m\Y(phl)P“_l 1 (mgd fp”)

and \\w
. N BJr.—Hr
U vE—Ltapf a0kE ol
(—1 (:a(..,.:f V5o
\ \, = Zat—1 E 32k_l+m_1)[;{ia] (mod p*).
;\ =1 .
soMultiply these congruences by
QO (—1)°Ce; o=0,1,2 ...,n

and add them member by member. In the right-hand side
perform the first summation with regard to «, which gives

3 (— 1) O = (L= o)

e=0
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so0 that the general term of the sum taken with regard to sis

—ival %@
ka = 32"_1(1 - 8?' l) [pﬂ-"g]‘

Suppose now that N\
k 3 L ;- 1' ¥4 t\t\
£N\S
Then if s is divisible by p, N\
z’n"
2= 0 (mod %), L0y
LV

and if s is nondivisible by p, &N

(A =~ s*~)* = 0 (mod m/
by Fermat’s theorern. Therefore, fgflg}tl\int-egers s

by = 0 (mod ),
and consequently RN

O
<

W, dbyaulllﬁal y.org.in
2% a1 ve_Dhtan n\
{(a 1)2( 1) 0 P = 0 (mod p*}
L] HU “’\
But ¢ — 11is nhﬁ‘dwmb{e by p, a being a primitive root mod
p, and s0 finally e obtain Kummer’s general congruence
N
O D (arenae = 0 mod 27,

Noo

£=0

va:ha“mf Ez(n+1)/2and 2kis nondwmblc by p — 1. For
”\ 7} = 1, 2, 3 in particular, we have

- (- 1)‘u BH" = 0 (mod p)

B B Busa,

7 2 -+ i = 0 (mod p7)

By Bk+ By B

-——-3—.]n ol Waiin SN W k+‘in_ 3y,
(-1 +3k+2 (— 1)’&_{_3 0 {mod p*),
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the last {wo congruences requiring & = 2. For example, lat
us take w = 8, k = 3. Then

%a _ ._é_ﬁ = 1 (mod 125), %—5 - t‘Tls = 1_16 (mod 25), N
B~ 1 moa 25) ,\‘
and ) \”E\
R
ag it should be. .\?}\\'
N

Exercises and Problems
WV

1. i @ and b are two relatively prime, ;ﬁ&jﬁ;}er&, then
(@ - 1) (b%Y* 1)Bs
AL 4 . Miaiid

N
6

is an'.J?s an Integer. “WWW’ dbraulibrary. org.in

. Prove thaf for an odgs pnme P
\\
O =1
s = (T ot p)
z

Hixy: Usa’th‘eﬁumhary eongruence in Sec. 6.
3. Bhow That for an odd prime p

\~v -1y Cas
111—2\5%\21,—2 4.+ (__2___) ={-1 % (2 - 2)Bp-1 {mod ).
RN 2

»\ii\;HmT: Notice that

2 — 2 1.1 1
=] —-4+=-—= .- ——— (mod pj}.
P 1=3+3 p—-1
4. Integers
23(2% — 1)B;

p o= ——

2k
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ocecur in the expansion

t'anx:Tl_+T2 +T3’_T+'

and are ealled “tangent coefficients.” By an appropriats FL‘{}[JliGB.tiOI:P\
of the Voronoi congricnce, prove that

r—1 & \~\
- 7N\ *
Tk—l—” = { 1) Tw (mod p) ' \>
for a prime p, R '\‘s
6. Taking e = 3, 4, 6 in Voronoi’s CONEruence, prove tiiztt- for o prime

p >3 .\:\"\.

[p/4] v

137 % — Ao | go—1t E

P {(—1)B; = 13,‘ s%1 (mad )
: gﬂ:ﬁzﬁlﬂ
if 2k is nondivisible by p — 1. NS
8. In & similar manner prove alko that )}~
1 . 211 o 31’_2:: 4 40 % ‘N’A'f, [£/3]

(=L 2} s%L {mod p)
WOWW dbj‘ai]hbl arysm[ﬁ, 1

[p/5]
1_4p2k_5p2k+83=— & .
—-__._4,_0_.__ (\ VeB, = 2 g2h—1
¢ &\J s=[n/8]+1
\_\ 12p/5]
,:‘: + 2 %=L (mod p)
< s=[3p/8]+1
under the s thpﬁthPSIS concerning k. ’
7. Prow{that
LY e 9 (p-1)/2
"\‘:‘::o : 2 sﬂvp—l[};:l = - 2 22*~1 {mod p?)’
/ \ W4 a=1 - r=1

\af ¥ — 1 is not divisible by i(p —1). Tence, and from Voronoi’s con-
gruence, deduce that in cage 2» js not divigible by » — 1 and » by 2

(p—13/2
= —9nrp—1 2 P2vp—1 (mod pg_

a=1

—13)rr1 vp
(=1

(23!:1 —1
2up
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8. The symbolic equation |
e+ 13" + e — 1= =0
for ©# Z i determines the sequence of integers
2 =0, eg%—l, e; = (), g =8, . ...

N ¢

In gerneoral ege-y = 0 and {—1)en = Ep arc positive infegers ”c{lfled}

Euleriar. numbers or “secant coefficients” sinee they occur ‘q'ry the
eXpansion N
x4 x\

2 "
seer =1+ Fr— —}-Eg—— ’\(,

12 2se
'\

Show that for any polynomial F{x)
S e+ D 456 +e— D “’zf(x)

4
symbolically, and hence deduce that . A ~’

HL — 18 + 118 ~ -+ (- 3)’ 1{52,3 - 1)
Vo= 3fle) + (=1 Yle + 20}
9. I'or an odd =z the followiné;bongﬁleuceul!m}iggry org.in .
1 =g s~ AN (20 — 1 = (1) (mod 2,

Hence deduce that for,\aIQ\oéd prime p
s’ s I
(e) E‘ 1= (— 1) E, (mod p)
=
,Q Fp; =0 (mod p) if p=10nod4)

O (c) Lp_1= —2(modp) i p=3(mod 4
.‘, 5

AN

#\M0. Show that symbolically

W o e 42 = 3,

and hence deduce the congruence

(—1)nF, = 1 + 2i+ (mod 2¢4%)

if n = 2%m and m 1s odd.



CHAPTER X

QUADRATIC RESIDUES O)
N\
1. Definition of Quadratic Residues. Though. e~ have
already had occasion to touch lightly upon the s:fbjrzct of
quadratic residues in Sec. 12, Chap. VII, it isﬂﬁl"this chapter
that we propose to deal with it extensivelpy“beginning with
the very first elements and developing the whole theory ab
tnitio without reference to previcusly gsjablished results.
A number ¢ is said to be a quadratic residue of another
number m if the congruence R

=g :(hiéd )

can be satisfied by "‘s’?)fﬁquﬁggga;y“mi%‘l?his congruence is
impossible, a is said to Ko quadratic nonresidue of m. It is
convenient sumetimq&”,\m have an abbreviated cxpression to
denote whether o 18 a quadratic residue or nonresidue of i, 80,
with Gauss, wecshall designate the first alternative by alim
and the second’by aNm, the lotters B and N being the initials
of the La{gmiwords Residuum snd Nonresiduum. The case of
a primemodulus, as we shall see, is of paramount importance;
henq;’,&ti] further notice, the modulys will be supposed tobe

a prpic number.
~ 2. Prime Moduli, Zerois a trivial quadratic residuc of any
Nomodulus and henceforth will be excluded from consideration.
As eongruent numbers are at the same time quadratic residues

Or nonresidues, we may confine ourselves, for a prime modulus
P, to the numbers

'1,2,3,...,;9—1.

For p = 2 there is only one quadratie residue ; the number 1.
270
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To find asll the distinet quadratie residues for an odd prime
modulus it suffees to consider the squares

1%, 22: A V ES 1)2,-
reduce them to their least positive residues, and among these N
retain only the distinet oncs. Bince A
{
w-ir=emdp, O
it is clear that all quadratic residues will be fuuud,@frﬁéng the
least positive residues of the pumbers RAZ

N/

— 172
122 22: L :(pT)o\ 7

Now no two of these numbers are cqng&ll}mt modulo p, for the

CONZrucnes W
= x‘z (nod p)
implies either wz’ww dbr au

ibrary or
x-——:r:=0 mod 5 Y-org.in

and then 2’ = z, fﬂncgs@aﬂd & are both positive and < /2,
or €\ J
N\

,‘\x’ -z = 0 (mod p)
which is impbdsible since 0 < &’ + 2 £ p— 1. Thus the
least. positxiz\éiesidues of the squares

e .

\/ -1
{\ 12,22, ... ,(2'—'2“—)

N

-1 .
ere “all different. Hence there are exactly P 5 quadratic

™

\remdues for an odd prime p and, consequently, exactly as
many guadratic nonresiducs.

Example. Iet p = 11, Te find ail the quadratic residues of 11,
reduce the squares '

12 =i, 28 = 4 32 = 0, 42 = 16, 5% = 25
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to their least positive residues mod 11. The resulting numbers, arranged
in order of their magnitude,

1,3,4,5 9
are quadratic residues of 11, and O
2,6,7,8, 10 <O
) NS
are quadratic nonresidues. « \J
Here we give a table of the quadratie residgeﬂﬁhd non-
residues of primes not excceding 29: 4
\'"\
p= 3B N\
h N 2 )
. ’x:\\,,
p= 5214 O
N23
R 1,24 N
P=TN356 K\
T www dhraulibrary.org.in
B 1,345 9
= 11 T + *
PR V267800
¢&\J
p =13 B 4,349, 10,12
N..2::§: 6,7 8§11
-
®1,2,48 91315 16
= N L, 4, 4 85, ] T t
PN 3567 10, 11, 12, 14
\©
‘\;s\= 10 2 L45 6 7 9111617
"\,j::z N 2,38, 10, 12, 13, 14, 15, 18
)" p=23 B L2 8 4 6 8 01213 15 13
N'5,7,10, 11,14, 15, 17, 19, 20, 21, 22
p=2o 2 L4 6 7 913 16 20, 22 23, 24 25, 28

N 2,38 10,11, 12, 14, 15, 17, 18, 19, 21, 26, 27

8. Quadratic Residuality of a2 Product, The product of two
auadratic residues is also quadratic residue. Wor, if R and
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R’ are both quadratic residues, the songruences

= R, 5 = R’ (mod p)

are satisiied by somec integers x and . But then the con-
gruence '
= RR’ (mod p) ,:\

is satisfied by ¥ = z2’ and so RR’ is a quadratic resldues /

The produet of a residue B by a nonresidue N is a, q\Iasdratlc
nonresiilue.  For suppose that RN is a resu:lu\,\ then the
enngruence

= RN (mod p) N

is satisfied by some intogor z. Also \x <
= gzt (mod g}

for seme integer z and

Nag‘fﬁﬁ@&lwhbral ¥.org.in

) IH

Let ¥ be determined b {he congruence
¢\,)
\\ i = 1 (mod p}.
On multiplying..”hot-h sides of the preceding congruence by

¥?, we get NG

D = (e3)? (mod p}
{ &

conir ar%fo the hypothesis that & is a nonresidue. Conse~
‘IUGMJ,} NR is a quadratic nonresidue.

I‘f R, R’, R”, . . . are all quadratic residues and N some
\qaadmmc nonremduc then the (p — 1)/2 numbers
NR, NE/, NE", . .. {4)

are (p — 1)/2 incongruent quadratic nonresidues. Since
there are exactly (p — 1)/2 quadratic nonresidues, each of
them is congruent to one and only one of the numbers (4).
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This remark enables us to prove in a very simple wav that the
p Yy p 3

product of two nonresidues N’ and N' is always u quadratic

residue. For

N =NR, N = NR"” (mod p)
for some choice of residues B and B, Then AN

N'N'" = N¥R'R") (mod p);
but N2 and R'R" are residues, and so is their [Mii&uct; COnse-
quently N'N'' is a quadratic residuc. \

By virtue of these theorems the quadratie‘residuaiily of a
number represented as a product of fafkofs can be inferred
from the quadratic residusality of itg\factors.

v4. Euler’s Criterion. It has beét» proved already that a
number ¢ is a quadratic residuegr nonresidue of a prime p
according as . :.f’;’ )
wwiz_.qm‘@ﬁlibrary_org_in
am?_ =1 (mod p)

or i»,\

3
£ \‘.«'p___l .
s V@ ? = —1(mod p).

This importan$’ theorem, known as Euler’s criterion, can be

proved indépendently as follows, To any number + in the
series\:':}"
e\

ad
NS

1,23 ...,p—1 (4)

...\\xzfgi'i'esponds in the same scries a unique number s such that
N\ - ' rs = g (mod p). {(B)
Thle numbers r and s are different if @ is a quadratic non-
residue. In this case -all numbers (A) ean be paired in
(p — 1}/2 pairs 7, s satisfying congruence (B). Taking the
product of all congrucnces (B), for all (p — 1)/2 pairs, we
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get in the left-hand side the product of all numbers 1,2, ... .,
p — 1; hence
p~l
a? =1-2-3 -+ {p—1) {moed p) {C’)

if aNp. I aRp, then the numbers r and 5 can be equal only if £
r? = g (mod p). .\\

This congruence is possible and has two roots; if one of ‘bhem,
taken in the series (4), is ¢, the other will be p —&™\ If we
exclude, therefore, from the serics (4) the twe{mumbers ¢
and p — ¢, the remaining p — 3 numbers canpe’combined in
(p — 33/2 pairs r, s satislying the congruehce {B). Taking
the product of all these congruences, th’éfieft-hand side will

be the produet of all the numbers 1, 2,. N p — , excluding
p—3

¢ and p — ¢, while the rlghtﬁhand s1de is ¢ 2 ; consequently

1-2-3 - (p— 1)"‘3’1‘.’5’@5%““%9’5(@1@1@)

But
e(p jg},‘E et = —a (mod p),
and so &\~
Ll ‘\ . .
g 2pem)—1-2-83 - - (p~—1) (mod p) @)
's\l

if aRp. Maw e = 1 is a quadratic residue; it follows then
from b{ ‘;hat

O 1-2-3 - (p— 1) = —1 (mod p),

, \i’luch is Wilson’s theorem.

\ }

The congruences (C) and (D) can be presented thus:

p—1

¢ 2 = —1 (mod p)
if aNp, and
p—1 L
a2 =1 (rnod p)
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if aRp, which is equivalent to Euler’s criterion.  Hince every
number nondivisible by p is either a residue or nonresidue of
p, 1t follows that

P12
arl = (a 2 ) =1 (mod p) \
for ¢ nondivisible by p, which is Fermat’s theorcnd “This
proof of Euler’s criterion is due to Dirichlet. W

Peter CGustav Dirichlet (1805-1859), famous as 0B oripinator of
analytic methods in number theory, was one of the 'gr}ﬁ%’masters of this
seience in the nineteenth century. Indircetly b hiv’work and directly
as an excellent teacher, Dirichlet exercisod o great influence on the
development of the theory of numbers, csp@ia]]y in Germany. His
lectures on number theory have heen collpc?led and published by Dede-
kind under the title: “ Vorlesungen ither"Zahlentheoric” {fouril edition,
1304). This book iy considered, and fightly so, one of the best textbooks
vn the theory of numbers ever published.

B. Legendre’s SYMHBORSTIBENHQ 8l broduced into the
theory of numbers a vty useful symbol to express the “quad-
ratic character” of aumbers with regard to a prime modulus.
If o is not divigihlé by a prime p, Legendre’s symbol, or
symbol of quadtatic character,

NG
G)
'"\'5.
\‘... ‘ -
Qg{l’(}ﬁes +1if eRpand —1if aNp. Since by Euler’s criterion

=1

a? =1 or = —1 {mod p)

according as aRp or aNp, Legendre’s symbol is uniquely
defined by the congruence

p—1

ENC—
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From this definition the following simple properties of
Legendre’s syinbol can be derived immediately:

1. (@/p) = (a/p) i @ = a (mod p).

2. (ad'/p) = (a/p}{a'/p).

3. {et/py =1 In particular, (1/p) =1,
—1
b (U = (~1) ® O
The second prroperty is the condensed statement of the theorém ’
in 8ec. 3. Vroperty 4 is an important theorem in itselfy STt
amounts te the following statement: for primes of the form
= in —I_ 1 ’”‘,\\

—1\
ZIYe ‘
(P) * O

and for primes of the form p = 4n -+ 3,.“:\‘

(:_1) —
p v:’.. v

In other words —1is a quadratl&”fdﬁlﬁhéﬂ@f ipringsE th (m"d
4} and & quadratic nonremdue of primes = 3 (mod 4).

Adrien Maric Logendre (;1‘7\2-1833), in the field of number theory,
was an irmediate suceessordo Euler and Lagrange, Legendre pubhshed
the first treatise on nymber theory, * Kssai sur la théortie des nombres,”
in1798. Inthishe g'wes a full aceount of the work of Euler and Lagrange,
comploted by histOwll discoveries. Though far surpassed by the *‘Dis-
quisitiones ar:i}\netwae” of CGauss, Legendre’s book enjoyed great
popularity ras reprinted with 1mpmvements and additions twice: in
1808 and (\SO The last cditior appeared in two volumes under the

title “tljh(mlc des nomhbres,”
-6 }‘undament'al Problems. The whole theory of guadratic
idues reduces to two fundamental problers:
L. Is a given number & a quadratic remdue or nonresidue of a
given prime p?
2. For what prime moduli p is a gwen number ¢ a quadratic
residue or nonresidyc?
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The first problem in principle is solved by Euler’s criterion,
though this selution is not practicable for large primes. The
second problem is by far the more difficult. It took nearly
half of a century of effort by men like Euler, Lagrange, and
Legendre before the first complete solution was given b}>
Gauss. And remarkably enough the principles on gwhich
the solution of the second fundamental problem dopsge ndds shed
a ncw light on the first, and they supply a rca,liy Jpractical
way of solving it,

7. Quadratic Character of —1 and 2. qu a = —1 the
solution of the second fundamental problemfollows immedi-
abely from Tuler’s eriterion: —1 is a residuc of primes of the
form 4n + 1 and a nonresidue of p;ji\@es of the forwe 4n + 3.
For a = 2, Euler’s criterion failg e 'supply any information
about primes in regard to Whlch BAs a residue or nonresidue,
though induction reveals the: followmg smlple, rule:

2 is a residue of ‘ﬁFimflsbB?U% A" 1 or 8n L 7;
2 ig a nonresidue of§ ,pnmcb of the form 8n + 3 or 8n {— 5.

This was known\already to Fermat but was not proved until &
century later by Euler and Lagrange Though the proposi-
tion was hard for the first pioneers to prove, we 10W DOSSCSS
many sunple proofs.  Perhaps the following one, due to Stielt-
jes, isthie"simplost.

dte down the numbers 1, 2, 3, , p— 1 in their
na.tural order and place above each numb{‘r the gign + or —,
S ~“Aecording as it is a residue or nonresidue. When in the
\ ) “succession of signs thus obtained two consecutive signs are
alike, we say that there is a permanence; and when they arc
different, we say that there is a variation. Thus, for example,

for p = 13 we have

todt -+ + — +
1,2 3,4 56 7,8 9, 10, 11, 12.
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The series of signs presents six variations and five permanences.
To determine the number of variations and permanences in
general, we observe that the signs corresponding to two con-
secutive nuwmbers @ and ¢ -+ 1 present a varation or per-
manencs according as z, determined by the congruence

az = ¢ + 1 {mod p) (Al\

is a guadratic nonresidue or residue,  For, by See. 3, Jf Z i
a nonresidue, oz or ¢ + 1 will be nonresidue or reSIdué acwrd-
ing as G is re“-;ldue or nonresidue. Similarly, if z, x{‘a residue,
az will e a residue or nonresidue according as'@ds residue or
nonresidae, Now if ¢ runs through th(‘\p - 2 numbers
1,2 ...,p—2 the solution 2 of the cangruence (A) will
rin thwugh p — 2 distinet mod p num ers, For the two
CODEIUCIE0H
zal-}—a; zn—?ii%—g(modp)
require N\ ,‘“iww‘dbra wlibrary.org.in
P —
2w =0 (mod p)
~
or @ -~ @ =0, which is possible only if &’ = ¢. Since z
assumes p — 2 feongruent values and z = 1 does not oceur

among therg,\vhlues of z corresponding to @ =1, 2, .. .,
P — 2 wilkform some permutation of the numbers
O\ 2,3, ,p— L {(B)

'lhe*\smms of signs will presout therefore, as many variations
\QSfthvre are nonresidues in the serieg (B); that is, (p — 1)/2,
and as many permanences as there are residues in the same
series; that is, (p — 3)/2, sinec 1, missing from (B), is a residue.

—1
Thus the number of variations is V = P 5 If p=dn

+ 1, this number will be even and, since + stands above 1,
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the same sign stands above p — 1; that s, p—- 1 or —1 is
a residue. If p = 4n 4 3, the number of variations will be
odd, and consequently the sign placed above p—1is —,
which means that p — 1 or —1 is a nonresidue. Thuy
independently of Euler’s eriterion, it is proved again thaE

—11s a residue of primes of the form 4»n - L. N,
—1is 2 nonresidue of primes of the form 4 A3,
The series “: h
123, ...,p—1 _&¥
can be divided into two halves, ¥
1,23, ... ,37—’3\’
1 NV
Rtless &Y,
and the numbers of the secqqd‘ﬁélf are, respectively, congruent
mod p to ) www.c{bﬁgﬁlibl'ary.ot'g.in
P—1pp-3

— V—‘—J "oy ‘—2, —‘].
2{.5\ 2

3
! '- ”,n - +
The number of varations corresponding to the series

w\J) —1
:Q"\; —1, —2,...,—22—
is the sa{riﬁ"as that for the serics
\J : -1

;“%‘dr, if of two numbers a, g -I- 1, one is a residue and the other a
) nonresidue, the same will be true of the numbers —a, —a — L.
Consequently the number of variations in both halves,

Forr oy 3
Pl p+s3

2 2:"';p—l,

19 p—1
1p
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is the same; eall 18 Z. The number of variations in the series

5,2 ...,

will be
27 +

O\
where € == 0 if corresponding to (p — 1)/2, (p + 1)/2 we h@tﬂ\
a permunance, and e = 1 if we have a variation. Equzi‘bmg

it to {p — 1)/2 we find " \
—1 — 2 e,
z=% I \\?}\
In caze p = 1 {mod 4), both \
N
p—1 a 2t il
2 2 Y 2

are residucg or nonresidues at theg~same time, since —1 iz a
residue aned then e = 0. In cage'p = 3 (mod 4), one of these
numbers is a residue and thé) Xtﬁﬂ}ﬁ’rd:?"ﬁfﬂﬁﬁﬁﬂﬁ@‘ bémause in

this case —1is s nonresldQe conbequc ntly ¢ = 1. Thus
Z = —K< 7 if p = 1 (mod 4);
5.8 ’—;—3 i p=3 (mod4).
If p = g e wtheﬂZ]S even; but Z is odd if p = 8n + 5.
Cones ingly, the number of variations for the series
A N Le, ... P22

,l

\a’even and odd. That is,
’50_;2-_‘ " if p=8n+41;

&n + 5.

p—1 ;
S Np if P
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Because p — 1 = 2(p — 1)/2 in both cases is a residue, 2 will
be a residue of primes of the form 8z + 1 and a nonresidue of
primes of the form 8n + 5.

Passing to primes =3 (mod 4), we distinguish iwo fo
mod 8: p=81+3 and p =8x 4 7. COI‘IL:.‘-}?(}!'IdiIIg to

these forms, Z is even and odd, and .Y
e\
p%l—Rp if p=8r+3; .} et
.?Lhz__le if 7 = 8n —!—'K'\\

But now p —1=2(p - 1)/2 is a nouresidue; coirespond-
ingly, 2 is a nonresidue of primes P.=8n + 3 and a residue
of primes p = 8n + 7.

Theorems concerning the qugdi-a‘ﬁic characters of —1 and
2 can be presented in g concje‘pééd form by using Logendre’s

symbol. - Noticing that i bid2yisegvan or odd sccording
a8 p=1orp = 3 (mod 4} we have

A5) -

Again, (p? — )8 is even or odd according as p==x1or
P = 13 (mod 8); hence, for all primes

D 2 Pt
N §) -

Aﬁi{) the quadratic character of —2, it results from the formula

—9 _1)(2) p_l, -1

) ===~y 7 T
( D ) ( L /NP (=1
Distinguishing the four forms of P mod 8: p=8n+ 1,

8n 4+ 3, 8n + 5, 8n 4 7, we conclude that

—2 i8 a residuc of primes p = 81 4 1 or 8n + 3;
—2 ig a nonresidue of primes p = 8 + 5 or 8n + 7.
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Exercises and Problems

1. If ¢ z-: b are two pumbery nondivisible by a prime p, then either all
three congrasnees

x? =a, zf = b, 2% = gb {mod p)
are solvable or only one of them is. A
2, Bhow that the congruence &
'®)
25 4 7zt — 40x% — 100 = 0 (mod p) \ D
is solvable {or any prime p. \ R
3. Denois by (BR), (EN), (NR}, {NN) the number of se{mrences
residue—residue \’

residue—mnonresidue N )
nonresiduc-—residue ¢t {
noﬁresiduemnom'esidlié}

in the arries 1, 2,3, . . . ,p — 1. Show't'hs(’t

?_1 3\. p—l
(8 = Ei&i)_,_ *%YNWNM 11 K2
4
p_lr { 2—1
@y = 2 D0 O e i dnt b el A

4\\ 4

Hrr:

100 ) oo e 50-C2)

z—1 =1
= BN} — 2{NRE).

\
~R{’f{3rung to the preceding problern, show that the congrucnce

&\w 2% 44 + 1 =0 (mod p)
4

can he satisficd by integers z, ¥ {or any prime p. ]
“B. The sumn of the quadratic residues for & prime p = 1 (mod 4) is
Mp(p — 1), Hence deduee

_ o — 1 -1
[\/_p}+[\/§pl+---+[ p—r'p]=p12 :
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6. It is true, though the proof requircs analytical nethads, that the
sutn of the quadratic residues in the series 1, 2, . . . » # — 1for a prime
# = 3 {mod 4) is al ways less than the sum of the quadralic nonresidues,
Teking this for granted, prove the inequality

- o ~
(Vpl + v2p) 4 - - - + [\/p__ép] < -1y —2)

4 12,0\

7. Let ¢ and b denote indefinitely the quadratic resid ez nxia nonresi-
dues of the prime p in the series 1,2 ...,p—1. (r%t;gm that for
? =3 (mod 4)

$°¢ 2

p—1 O
2 }
b-Ols=- 365
P P SN
Hiwee: '\
. ) p‘—.]_:
QXY /
2p - e =, (—)z,
: N MY
and « together with nm@mﬁﬁltbgaﬁymtr’gﬂm P — Za exhauat all the
) _
nurbers 1,2, . .., p —MNora =12 .,, ,;a___‘

2

8. Bhow that t-llerciﬁls\c infinitely many primes of each of the forms
8n 41, 8n 4 3, 8‘\\4—“5, 8n + 7. Hivr: 4P L 1) for an old P, is
divisible by some'prime = 5 (mod 8); 2P2 4 1 is divisible by sorve prime
=3 (mod 8); 8+ | for any @ is divisible by some prime = 7 (mod 8).
For priraes ghthe form 8n -+ 1, see Problem 4, 8ec., 8, Chap. ViIi.

8. Q&i}ahraﬁc Reciprocity Law. The general solutios of the
sccgn\{d_" fundamental problem in the theory of quadratic
residues depends on a theorem of great simplicity and elegance

¢which, despite its simple appearance, expresses a deep property

w

of numbers. This theorem was discovered by Kuler and
published in 1783 in g complete form. as a result of extensive
induction. Ruler states the theorem in a rather complicated
form, as follows:

Denoting by s any prime number, let us divide the odd
squares 1, 9, 25, 49, ., . (s — 2)2 by 4s and denctc the
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remaind:ys, all of the form 4k 4+ 1, by 4. Other numbers

of the same form as the remainders, and less tha.n 4s, we shall
indicate ixv A, Then,
For primaos of the form We have A
tas + a s a residue, —s a residue
: . . .
ding — @ s a residue, —s a nonresidue L, {\
ing + A s a nonresidue, —¢ a nonresidue O
4ns — A $ a nonresidue, —s a residue A\
4
To iliustrate this theorem, let us take s = 5 'Diiridjng the
odd sguares v
1,9 Y

by 20, we have only the following rem&\mders
=1, 9 ~
Other rmambers of the form 4k'+ 1 legs than 20 are
W’WW dhr aullbraly org.in
“A = 13, 17.
Hence 3 lan quadratiﬁ‘maldue of primes of the form
20ny41) 20n ~ 1, 207 + 9, 20m — 9
and a qnadrat@o “onresidue of primes of the form

étm + 13, 20» -- 13, 20n + 17, 20n - 17,

these %\Z}: it forms containing all the odd primes.
In, 785 Legendre rediscovered the same theorem and by
mhdans of his symbol put it in this elegant form: for any two

o\
p—1 ¢—1
PV Y= (-1 T

(Q)(p) (=1

\\ 8dd primes p, ¢,
Because of the symmetry of this relation in regard to'p and ¢,
Legendre gave the name ““reciproeity law” to this remarkable
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theorem and was the first to prove at least a pari of it. In
proving other parts, Legendre assumed without proof the
existence of certain auxiliary primes. He assumad, namely,
that for any prime r of the form 8 + 1 there is another prime
of the form 4n + 8 of which r ig a quadrafic nonresidue
This is true, but so far has been proved only by znalytical
methods which were unknown at the time of Legenduen ©

Without any knowledge of the previous wor}c,,}l‘}} Euler
and Logendre, Gauss in 1795, at the age of eighteen,dideovered,
again by induction, the reciprocity law of Legefulte. A whole
year passed before Gauss could prove it éoinp]c—tv]y. “It
tortured me,” says Glauss, “for the whol® year and eluded
the most strenuous efforts before, ﬁ{{}ﬂ ¥, I got the proof
explained in the fourth section of\the ‘Disquisitiones arith-
meticae’,” The reciprocity law .was presented by CGauss in
the simplest imaginable f{)rr,n,’ W}i'mh we shall adopt here.

RecirrocrTy LA?‘;‘.MW% pﬁgﬁfﬁfr a?'yi.:gr g ‘guad:fiw residue or
nonresidue of another prime q according as (—1) 2 ¢ 4{s g residue
or a nonresidue of 2NN

Later Gauss found six more totally different proofs, and the
subsequent depelopment of number theory brought the
number of difzei'ent proofs to more than 50.  All of them are
based, howtver, on more or less the same principles #s the
seven GausSian proofs. We shal] give here the fifth proof
of Ga‘\uss,' perhaps the shortest and simplest of all. It is
basedh on a remarkable transformation of Euler's criterion
whieh is known as the “Lemma of Gauss.”

N

@) 9. The Lemma of Gauss. Consider the §(p — 1) multiples
@, 2a, 3q, . ., ,g_z_—la {(4)

of a humber a nondivisible by a prime p. Some of the least
positive residues mod p of thege multiples are less than L4p and
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some are greater than '4p.  Call the number of the latter g;

then .
a
(5)- o

To prove this assertion, lot ‘ ’:\;”\
@y, oz, o . . . \3\(}})
be thosa least positive residues of the numbers (A“)(\%’rﬁich' are
< lgp, while \
p—Bup— By ..., p—Rh
are the lzast positive residues > 19p,s0 tha’m, B2, . . . ,B.are

alt < igp, Clearly, series (B) consmts\of different numbers,
and so docs the series

BI} 621 -s:-:::" ' Bil' (C)

Morecver, none of the nu@ﬁ@ry-@ya@sb@mmlm For the
equality «, = 8, impliegthe congruendes
R\

i
with ¢ and j both positive and less than 14p, from which an
impoessible mngruence

N _
(0 X (i 4 fa = 0 (mod p)

e’

ja = & (H].Od p)?

fOILO‘Ns beeause neither @ nor 4 + j < p s divisible by ».
\’Fh&, numbers (B) and (C) togethermakeupy +» = (p—1)/2
\\Ilﬁmb( :rs all less than L4p and all different; hence

@y o5 . 0.y @y BuBa - B
coincide with

1,2;- . ;_'"_2'_-_’
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only taken in a different order. Now

2-1
2

R il S U
a-2a-3a 3 a=1-2-3 g

=@ cw (p =B~ 8) - - (p— B, fmod DA,

or A
N\
-1 p—1 ..' \.;.
123 Pt s (cDraim s OV,
™ :"
=(-1)»1-2-3... ?—j—"é_li Trnod p),
whence \":’\
r—1 N\
a? = (1) (modpp
On the other hand, }\\
1
a2 = (_‘E {mod p),
PASY

and so RN
: Y w.dbpaulibrary.org.in
=)= =1 (mod p).
(;’)i\ (1) (mod p)
a N\ - ‘ _
But (I_?) and {— 1{@1@ units +1, and units congruent. for an

edd modulus. must be equal. Thus the lemma of Gausg,
stating thaty, ¢

s"\x.;:\w (g) = (=1},
is pr;@'&}d.

,:1’9} Proof of the Reciprocity .Law. Let 2 and g be two
rx%]ﬁferent odd primes. By Gauss's lemima,

o @)=

.where #and v are the numbers of thosc muitiples of ¢ and p
in the series o

"4
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g, 295 3g3 Loy “_E_“‘} (A)
-1
D, 2}9; 310; oy E—Q“‘P; . (B)
whose least positive residues are, respectively, greater than }/p
and 144 r1‘0 prove the reciprocity law in the form given t«i;t\
by Lege?:s. _ O
-1 ¢—1 \
OO e
p q, ! /.'\:“
AN
it suffices to show that NS
—1
ptr=bo— I ! (mod9).
\

Now this property can be establishedhiot only for two distinet
odd pritnzes p, ¢ but for two odd relatively prime p and g,
beth > 1, This can be shown in a great many ways; the
fifth Gaussian proof proceed&‘(&%\nfdllbmwshhl ary.org.in

The lesst positive residue of any number mod p either is 0
or beles gs to one of th‘e;s\eneq
O\ ~1
\1 2, 3, p—zm &)
\;L:‘ ’E:ztl ?_'f g .. p-L (1)

Modu] b@ the least positive residue is either O or belongs 10 one
of th(\soﬂ(,s

~ g—1
~~\;~; 1,2 I (F)

3
\/
!5_’_*2% :F_3 e g—1 F"

Correspondingly, the numbers

~1
1,238, ..., 955 (©)




o

290 ELEMENTARY NUMBER THEORY

none of which is divisible by p and g simultaneousiy, can be
distributed in eight classes as follows:

Class 1 contains numbers whose leagt positive residues mod
p belong to {f) and meod g belong to (F). Let their number be.\
. .

Class 2 eontains numbers whosc least positive residues foed
p belong to (f) and mod g to (F”). Let their number poyg.”

Class 3 contains numbers whose least positive re a.uLw-‘ rod
p belong to (f*) and mod ¢ to (F). Let their number e ¥.

Class 4 contains numbers whose least pomtwem‘m dusz mod p
belong to () and mod ¢ to (F'). Let theiv'owmber he 5.

Class 5 contains multiples of ¢ whose leagt positive i-.‘--:ldll(:s
mod p belong to (). All the multip}{slof g in the series (€)
are 5

N W

g 2g, . -.;.’}22— .

Consequently Clasd"8” E’on%ﬁﬁ'ﬁ%ﬁﬁ%ﬁ%m

Class 8 contains mu].tlples of ¢ whose least posttive rosidues
mod p belong to {fy\ \“Their number is (p — 1)/2 — 4.

Class 7 contaif}g\multlp]es of p whose least positive residues
mod ¢ belong Yy {(#"). Bince the multiples.of p in the series (C)
are \\¢)

& p,2p,...,q-;-—1p,
Clafs?&\ contains » numbers.

$€lass 8 contains multiples of p whose least positive residues

. mod g belong to (F). Their number is (g — 1}/2 — ».

Classes 2, 4, and 7 comprise all the numbers of seriex ()
“:hose least positive residues mod g belong to (F'). For a
given residue p belonging to (F'), such numbers are

 p-3
P:9+ﬂ,2q+p,...,p-—-2—-—q—|-p‘
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In fact, the wequality
'{.g-i-pépg =2 g.{_q 1

2 P )
or
tg s P+ (¢ +15- —)
holds for ¢ = 2% and no longer holds for ¢ = Prv?)
2 g

£ 52:
)~ 4

, . -1 N
Hence wiil: o given p we have 2 numbers, and s;ﬁce‘.p can

2 .
g-~-1 AN
have +—- values, the number of numbers i\ Classes 2, 4,
and 7 is N
p—1 g—1 8"
2 2 AV

On the other hand, this same mgmb.e; is8+8+ » andso
B+ 84+ V,%{fﬂﬁ%-&"%b’rla"y-org\in 1)

In a similar way, b¥ interchanging p and ¢; that is, by
enumerating the %@bérs in Classcs 3, 4, and 5 in two ways,
we find that N

e —1 g—1
SOy +o+u= B IS @)

To {.=a§n,~1si;}umber a of the series (C) belonging to Class 3 in
the sm}c@"

N\ Pq_;rl, ?igf_i e pg -1 (D)
o \¥;

\ corresponds the number pg — @, whose least positive residues
for the moduli p and ¢ belong to (f) and (F"), respectively, and
vice versa. Therefore in the Class 3 there are exactly as
many numbers as there are numbers in (D) whose least
positive residues mod p belong to (f) and modulo ¢ to (7).

N
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Now the two series (') and (D) make up the series

1,23 ...,pg — 1. (E)
Consequently the number of numbers in Classes % and 3 is
the same as the number of terms in (E) whose least positives
residues mod p belong to (f) and mod ¢ to (F'). But to any
pair of such residues corresponds & unique numbor m\(E),

and since the humber of such pairs ig ) O
p—1 ¢—1 “':n."
2 2’ (€
Classes 2 and 3 comprise ' 3
p—l g—-1
2 7 D
numbers, that is, 3 x\
Bt+vy= 2 3 5 -1

whenee, in conjunctwwngmagﬁbq.g,dy@g i follows that

= g—1
‘“+<"' =ro e

3

¢\

qQr \\
et v = L q;21 {mod 2),

Qs 2
AN

which, agywe’have seen, is equivalent to the reciprocity faw.
Ttréimiing to show that the form in which Gauss expressed
the\%lpromty law follows immediately from the relation

o~ @)=

In fact, if wo introduce Legendre’s symbol, the Gaussian form
of the reciprocity law amounts 4o

()~ (“47)

1
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Now for any two numbers @, @,

and 50
_:_. -1 O
(=T f(=1T A
D ? p . :'\\“
But for the same reason ' ,~ff; -
"G
gt _ a—1 {6 4
() - (5) T e
r ?J \
and AN
N\

(257)- ()

But this indeed equals (p/g)mxggtrue (of Legendre’s relation.

11. Applications. A few examp} Jes ]tlfiiﬁs(hc%wn how the
secoud Tundamental Kmblem can be solved by means of the
recipreoity law. \\,

Exarmnple 1. Of\what primes are 3 and —8 quadratic residues and
nontresidiles? :By the reciprocity law, 3 is a residue or a nonresidue of p
according as?\ Nt

\ul p— 1
i‘,‘ (—=1) 7 p

is ap}l;}sidue or a nouresidite of 3; that js, according as
e\ ~\' p—1 pl
\/ (-1) 2 p=1 or (—11 2 p = ~1 (med 3).

Let at first p = 1 (mod 4); then these conditions are equivalent to

p=1, p= -1 {mod 3)
or, modulo 12,
# =1 (mod 12}, p = b (mod 12).
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Secondly, if p = 3 (mod 4), then

p = —1 (mod 3), p =1 (mod 3)
or
p = 11 {mod 12}, p =7 (mod 12).
The answer to the first question is O
3Bp if p = 1or 11 (mod 12); r’\:\’
3Npif p =50r 7 (mod 12}, e \

Nowe
By the same reciprocity law, —3 is a residuc or a uonremdl,ko \’?g # accord-

Ing a5 p is a residue or & nonresidue of 3. That is, AD

\"
—3Rpif p =1 (mod 6); N}
—3Npif p = 5 (mod 6)

Example 2, For what primes is 5 a quadm‘fﬂ’? residue or nonresidye?
Since the gquadratic residues and nonremdu\ of 5 are 1, 4, and 2, 3,
reapectively, 5 will be a residue or nonrcsldﬁe of p aecording as

‘_E 1 ’C
{(—1) p E’l "4 {mod 5)
or www dnh‘t -atlibrar y.org.in

(— 1{ :-'J—2 3 {mod 35).

Dlstmgulshmg again tv(o,‘ cases: p =1, p = 3 (mod 4), the pritves of
which 5 is a residye characterized by the simultaneous congrucices

=1 (mod4), p=1,4 (mod5),
AN =3mod4), p=1,4 (modb5),
whence o . \ud
\™ p=1,9 11, 19 (mod 20).

,a

il

Plilzm;g\of which 5 is a nonresidue are characterized hy the congruenses
& N p =1 {mod 4), P =2, 3 (mod 5),
\ ) » =3 (mod 4), P =2, 3 (mod 5),
or
p =17, 13, 7, 3 {mod 20).
The final eonclusion is

S5Ep if p
BNpif p

+1, +9% (mod 20}
+8, £7 (mod 20).

('}
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Example 3. Of which primes is 6 2 quadratic residue? The number
6 is & quadratic residue of p if simultancousdy 2Rp and 3Ry or 2Np and
3Np. In the fitst case, either

# =1 (mnod 8), p =1 (mod 3)
* p = —1 (mod 8), p = —1 (mod 3), N o
and in the seeond case either - ) ¢ ( \\
p =3 (mod 8), p =1 (mod 3)
> p=-3mod8, p=—1(nod 3).,.&“

These four simultaneous congruences give

p =41, +5 (mod 24)¢ &
Thus : & Q\
+1, +5 (vhod 24);
+7, {;;11.(1n0d 24),

. r N Ny
In a simiisr mannper we find that \Iﬁ»rw dbrauiibrar

—GRpil p
—6Npif p

6Rp i p
6Npif p

nw

3 ¥.org.in

18, 7 11 (med 243;
Vl —~5, —7, —11 (mod 24}.

lll o

For ecmpostte nuf ers the solution requires the considera-
tion of suveral cases according to the quadratic character
of the factors., @4 ¢an be greatly simplified by the introduction
of the goner, lzéd Legendre’s symbol which was used explicitly
for the -h.@t\tune by Jacobl A

C. g8 T\ Jacobi (1804-1851) wag & very onistanding mathematician,
Thougd* his hest, discoverics belong to analysis, in the field of number
111601:‘? Fueobi made important eontributions to eyelotoray, with its many

amhific :ations, and to that peculiar branch of the theory of numbers which
is elosely reluted to elliptic fanetions,

12. Jacobi’s Symbol. Let § be an odd positive number and
P any number relatively prime to @. I

Q@=qq " @
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where the primes ¢i, g3, . . . , ¢ need not be neocssarily dis-
tinct, then Jacobi’s symbol

@) )
O-00 0 ©

the right-hand side containing ordinary Legend&‘é’?; #ymbols,
Jacobi’s symbol possesses properties quite anangt)u« 10 those
of Logendre's symbol.

1. First multiplicative property:

)-8

if P is relatively prime to ¢_ al’td Q’ follows immediatels from
the definition. W W dbrzai]hbl ary.org.in

2. Seecond multlpllcatlve property:

«C0)-0)

if P and P/ a’:i'w relatively prime to @, follows from the suailar

property/of-Legendre’s symbol
#\V

& -0
g a/\¢
R

’”\: where ¢ is a prime not dividing P and P’. In particular

-6
§-+

iz defined by

ginee
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3. Property of invariance mod @: If P’ = P (mod @), then

(&)~ @)

It follows [rom the definition, combined with the observatioh
that for any prime divisor ¢ of @ the congruence P’ =s‘P
(mod @) iraplies P’ = P (mod ¢) and that for chen{h‘e‘*i

symbol PN
(1;“‘1) - (f‘_’). Ik ¥

q g . \}\”
4. The symbol ( Qi) is expressed as foll\dws

() - o

3

A

Let @ = 192 © * + gy; then ‘«. W
,v AT dbl E}ullbl’al ¥.orgin

= (— 1)2

and by definition , "“j}
¥ oL : \\
“_"1 - 5

G7) = o

It remag,ﬁsx}o show that
g&\ 1 _a—1
X 2 2
'“\V\?:B have

‘N =+~ DA+ g-1)=14+@—1+g—1
! 2 (@~ Digs - 1),

o+ 2*_211 (mod 2).

but (g, — 1)(gs — 1) ix divisible by 4, and s0
g =1+ (g — 1) + (@ — 1) (mod 4).
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Multiplying both members of this congruence by g3 =1
+ (g: — 1), and again neglecting multiples of 4, we have

qipags = 1+ (g — 1) + (g2 — 1) + (gz — 1) (1need 4).
In the same way we find that in general

gy - =1+ (g~ 1)+ (g — 1) + - K
+(g.3:.""'1\t d);

N

\

whonee

-;Q_;_l_=9‘1—1 g

—1

+ - +9" » (mml 2).

\,
5. The value of the symbol (2/Q) 1&

(Q) =’ ( 7‘.1)’73;1

In fact, for a prime Grwr. dljrauhbl ary.org.in

~ ()= (0%,

and so by deﬁmt{é\nv
(2 Q____p;s’ ... ;@1
2) = (-3 T

AQ
It rem,sQﬁ's to show that
\- L_g—1 -1 g — 1 )
“\”s~ [ F G B mod )
\"\, We have

=1+ -0 +g—D=14+(@ -1+ (g~-1
_ + (gt — B - 1),
but {¢F — 1)(g3 — 1) is divisible by 64, and so

@i =14 (gt ~ 1) + (¢ — 1) (mod 186).
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Multiplying both members by ¢f = 1 4 (¢f — 1) and drop-
ping the multiples of 16, we have

A= 1l+ @ —-DF@E-D+E-1) (mod 16),
and, in general, : A

e - ai=14+ (@ -+ g-1)+ -
+ (fz;c - 1) (maé\lfr),

whence
N
@ — ql - '_-'Ea =1 L@
—8 + + + 2 &\.\(mod 23,
8. The recipro_clty law for facobi’s symbaly for positive odd
P and &, Y

-

We shati prove this, supposmg ai: first that € = ¢ is a prime,
Then W W dbl‘au]]bji‘['_y .org.in

ORG GREG!

where P = ppy ¢ Q*}p‘ and the primes are not necessarily
distiner, By the rempromty law

(- @D ()T
'n*&; e (%) - (5;)“”—2%*

and S0

O (@)= (atier e

Considering that

n—1,p—~-t,  p—-1_PFP-1 2
Tpo gt H Ty =y (med2),
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we have finally

©)-()-o=

In the general case
O-00 € O
Q 71/ \gz % O

Applying the reciprocity law to each factor, we g.qﬁ\ "

(g) = (p)(—l)Tl(mz +EL «¥1)

\
But again \*'\\\”
-1l -1, @ ..}=_.Q 2 1%
S5 + 5 e +.:~, 5 ="3 {mod 2},
and finally N

ﬁllbrﬁo@j}l
(Gt
’“\
as gnnounced. ."‘\

The reclproclty\lq\v can also be stated as follows:
If at least ong of the numbers P, @ is of the form 4n + 1,
then <"

&0
{;\'\o Q = P )

but:ij’\both P, Q are of the form 4n + 3, then

s

S &)--()

In faet,
P-1 Q-1
——
isoddonlyif P=@Q =3 (mod 4).
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Often it is convenient to intreduce Jacobi’s symbol with a
negative ¢J. It is defined by

-
)=+ &

If is easy to sec that the reciprocity law holds u.n{e%é both

purnbers F and @ are negative. R4
13. The Evaluation of Jacobi’s Symbol. JThe reciprocity

law allows a very expedient evaluation of 8. ;Jacobi’s symbol

{(P/Q). TFirst, we may suppose that P i& positive, odd, and

< g€} TIf it is not so at the beginningﬁ\ve can set

| P = (—1)2°R.mdd Q)

where # is positive, odd, add < 140, and where a = 0,

b 2 0. Then, by the propegﬂf% by e ind Q,

&

and by the secmj&,multipﬁmtive property

2 O-@e0

where t%:"symbols

R\ :
A\ ) (.:!.), (3)
m\: 7 Q Q

\.u'e determined by inspection. Thus we can supposc at the
outset that P is positive, odd, and < 14Q. By the reciprocity

T 00

Alzo, by definition,

¢
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where ¢ is a known unit. On dividing by P, wo have
Q@ =Pm+ (—1)y2*R

where R is positive, odd, and < 14P. Conscéluent-ly

0-0 o
P} T f\p )
u\\ ~

. . W
where ¢ is a known unit, and \ o

P\ (E O
0-<GF)  &

The same proeess ecan be applied to (R/E}.and in a fow steps
the value of the symbol (P/@) will be Qetormmed

Evample. Determine whether 3, 422 13 @ quadratlc residue or a non-
residuc of the prime 5,683. First

s

3&%‘2\.« d-ﬁ'& %lgllb]“al ’ m

3,422 (051 (2,261 2,261
5,683 s 683 5,683 S \5,683/

By the reciprocityJa

oM (2 261) (0,683)
N> 5,683 2261
But '\”
\ b.683 =2,261-8 — 1,100 = 2,261 -3 — 4 - 52- 11,

oY 5083 _ (a1
N 2 961 ; 2,261 2,261
- 11 2260y -5\ (5
2,261 1 /" /- A\
5 11 i
(ﬁ)*(z)=(s)21'

and
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2261 o (sam)
5,683 ! 5683/ °°

that ig, 3,422 iz a quadratie residue of 5,683,

Finally

N

14. Solution of the Equation (P/Q) = +11for ¢§. The use |

of Jacohi’s symbol simplifies considerably the solution of th@
seoond fundamental problem in the theory of qua.dratlc
restducs.  If P iz any given integer even or odd, pqs‘rtgve or

negative, we can always represent it in the form D
H \\'

/N

P = (~1)2¢R
with a positive odd E, nondivisible by &ﬁ@ﬁre > 1. Binee

P s 1+5Q.’3, R
(¢)= v EQ)’

the equatisn o
(_13 :{iwyf_,fbrau]ibrary.org,in
gh= L

where { i conside red as\an unknown, reduces to the form

-

and this, by ,\tﬁe rec1proclty law, is equivalent to
Qa ~1 + __ -1 RB—-1

A - e

PR
tl;e\umt ¢ being determined for each of the four possthle cases
\”\:” Q=1,38 5,7 (mod 8).
In case B > 1, let o and 8 represent all the numbers < R and
relatively prime to R for which

B-+n o @-
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respectively. Then the equation

©-+

is satisfied for A
@ = a (mod R), AL
and the equation & )
& O3
is satisfied for 4
' @=p8(mod R). O

As to the valucs of @ and 8, they are fouxn,(\iby trials, simplified,
however, by various particular devices, &

It is remarkable that the classef\of numbers @ and 8 arc
equally numerous, each elass ‘eontaining exactly fe(R)
numbers. To prove this, copsi’dér the sum

wwwsd«b;t:;é%f PR OTg.in
v
N\ z

"s\
extended over all%$he numbers belonging to any reduced
system of resigues mod B. Let, Ty Ty, . . ., 7. be prime
divisors of Bywnd choose for & any nonresidue of r,. The
number } deijhfed by the simultaneous congriuences
I=k@iddr), =1 (modry) L, I=1 (med )
I8 31\(?1&1 that

& H-00 -

Now Ir runs over the reduced system of residues mod B
together with x; hence

=30 ()36)- -»



QUADRATIC RESIDUES 305

that is, § = 0. But Sis the difference between the number of
&'z and the number of #'s, and so the numbers a and the
numbers & are egually numerous. Thug the numbers @,
satisfying sither one of the cquations

(%) = +1 or (%) = —1, “&:\;

are distributed in 1e(R) arithmetic progressions wij:li;:}ane
difference. 7. Combining these with the four progréssions
v 41, S 4+ 83, 8n + 5, Bn 4+ 7, wo conclude, ﬁ)ially,' that
all solutions of elth(,r one of the equatlons O

D-r - G

are distributed in 2e(R) = go(4R} ‘progressions with the
difference K. ' AN

< ',‘

Exzampls. Characterize all poafjw wdalhmmhhl;&aﬂy Eﬁigﬁiﬁﬂ 30, for

- which NN
N\ ]
O 5w @)
Q N\ 4]
In this case

[30\ o T1/15 g1y 8l g

and the 'ﬁh;‘s\;éiluation is equivalent to

O Q @-1,9-1"
NS (—) (-1 % %y
,..\i ih
\ at is,
(2) = 41 i Q=13 (mod 8}

and

(9_ = -1 if Q=35 7 {meod 8).
15

~
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Since for £ = 15 the numbers a and § are

a=1,248 §=711,13, 14,

by solving 16 simultancous congrenees, eight in each group, ~
0=1, 2 4, 8(mod 13), Q =1, 3 (mod ¥ A
€ =7, 11,18, 14 (mod 15), Q@ =5, 7 (mnod 8, ".\:\\““.
we find that the equation ,,";‘ Nt
\ &
30 o °
— ) =41 €
(Q) \:"_\\

1s satizfied by

A\
Q =1,7,13, 17, 19, 20, 37, 49, 71, 83, 91, 1047403, 107, 113, 119
AN {(tnod 1203,

and the other equation P ’ v/
30y 9\
= SN
is satisfied by www.dhratilibrary.org.in

S

@ =11, 23, 31, 41, 43, 4@"53} 59, 81, 67, 73, 77, 79, 89, 97, 109
N\ {mod 120).

N
\ \ Exercises and Problems

i Dcterru.ine)’tﬁc quadratic character of 231, 783, 563 for the prime
modulus 997\~ Ans. R, &, R.
2. Ts 56)%37 a quadratie residue of the prime 1,001,9837  Ans. Yes.
3.\E0:?;§\?hat primes is 7 a quadratic residue?
K Ans. p =1, 3, 9,19, 25, 27 (mod 28).
&,‘4; For what primeés is —10 g quadratic residue?
Re N _ Ans.p=1,17,9, 11, 18, 19, 23, 37 (mod 40).
\'\ *" 8. For what numbers is

) 2

(ﬁ) =17
n

dns.n =1,3,4, 9,11, 12,13, 16, 17, 27, 29, 33 (mod 35).
’G. Show that Euler’s theorem in Bec. B is entirely equivalent to the
reciprocity law in the usual form,
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7. Using ibe reciprocity law for Jacobi’s symbols, show that

/4 st SRS tid
K—P—) ={(-1) 2, (}—,) =(-1 8.

& Prove that 4sbe — b — ¢ cannot be a square for positive integerg™\

b b:.'-}.chet X be one of the numbers 8, 5, 10.  Show that p \:\’
. =2 ] \ sﬁ\ ’
ia prime if and only if the first power in the series ’ ( R
Ny NCNY NS L NN
gongruent —1 mod p is RN .
Ne;;& x\ ¢
10. If y, g are two different odd pr’ilpé,;;’éNg and
Pt NV
f—?‘_v—;w"é; w“’.dﬁﬂraul ibrary -oTg.in

then necessarily ¢ = 3, p =5.
i1. By analytical me;jgkif)ds it is proved that for any prime p =1
{mod 8) thave exists a {‘ri;ﬁe g = 3 {mod 4) of which p Is a quadratic non-
remtdue.  Show t-hatkhere are such primes ¢ below \/*E;J-
12. Prove that@lbprime divisors of 4 — f% - 1 are of the form 12r + 1.
13, Prove Lh’aﬁ.‘ i2f‘3 — 1 is divigible by at least one prime of the forne
120 4 13, W\
14, Pr@ia that 472 + 3 is divisible by at least one prime of the form
12n \iiff is prime to 3, )
168 Prove that 4f 4- 1 for § odd and nondivisible by 3 has at least
oudprime divisor of the form 12 -+ 5.
»\ A6, Bhow that each of the arithmetic progressions 12n +1, i2n + 5
\ J12n + 7, 120 4 11 containg infnitely many primes.

15. Quadratic Residues of Composite Moduli, A number
which is a quadratic residue of 2 composite modulus is
necessarily a quadratic residue of any of its prime factors.
To see whether this necessary condition is sufficient, we shal!
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start with moduli which are powers of primes. Again we
must distinguish here two cases: when the modidus iz g
power of an odd prime p, and when it is a power of 2.

Let @, which we shall suppose prime to p, be a guadratic
residue of p. Then it will be a guadratic residue of any
power p™, and the congruence O\

x? = a (mod p™) \ O
will have exactly two solutions. This can be deriw o from the
general considerations of Sec. 8, Chap, VII, butﬁ&an b proved
independently, as follows.

Let a be some solution of the congruenge,

z? = a (mod p‘);‘,\s
and let the two integers P,,, Q,,. l:)e determined by

P \j_ Q’ﬂ}{uhbl(ar?_ 01{ "

(¢ = V)"

form=1213, .. .«\ Cl(‘a,rly
i Qm o = (Pm—l + Qm—-l'\/a) (a + ’\/{1),

whence
¢
Pﬂe.:'ﬁnpﬂl——].a + Qm-—la'; Qm = Pm—l + Qm—]a'-
Thesa fedurrence relations for m =1, 2, 3, . determine
succes%ively Py, Qi Py, Qs . .. startmg mth Fe =1,

Qp= 0, and 1t is evident that P,., Q.. are integers as announced,
CMoroover,

Pm + an = 2aPm—1 + Qm—l(a + Cl’z) = 20{(P.m_1 + an-—l)
{mod p),

whenee, by repeated applications of this congruence, it follows
that

Pu + o = (20)" (mod p),
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so that P.. -+ aQ. is not divisible by p. On the other hand,
m = Qun-la — a?)

i divisible by p; hence 200, and consequently @, is prime to
p. Now

Pl — aQ = (a* ~ )" \
£ \’
e N\)
is divisibie by p®, and the congruence ‘,»}\ "
— a2, = 0 (mod p™) (‘&0

shows ihat the fraction P, ,/ Q modulo p, which fag\brevlty we
shall densate by 8, satisfies the congruence NS

= a (mod p™), /™

whick proves the first part of the sta]f:&nent.
Let @ e any root of the congruenee

P=a (moﬂ "3
then . N wwr.d by auhbraly -OTg.in
(x — ﬁ)(ﬂ%-}- ,3) =  {mod p™),
but z - 8 and = + evx:@nnot be both divisible by p; otherwisze
28 or # would he Bivisible by p, which is impossible. Con-
sequently, elthg}‘,“;

X/

,\g:E g or z= —§(modpm);

that i ﬁ}a::'re are only two distinet roots § and —p8 of the
cong’\@mce : .

z? = a (mod p™).
\’\: 'Exa.mple. Solve the congruence .

7t = 2 {mod V9.
One solution of the congruense

zt = 2 {(mod 7)
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is @ = 3, &0 that
Py=3, Qg =1.

Then
P:=3.-34+2-1=11, Q2= 34+1-3 =8
Py=3-11 +2-6 =45, Q. =11-46-3 - 29, ~
and 4349 med 343 is 108. Heuce the two roots of the proposed, con-
gruence are 108 and 235, ¢\

4 N\
16. Moduli 2™, In this case ¢ is an odd numhv” “In case
m = 1, the congruence RE

2¥7)

z? = a (mod 2) ’ “\\
has the unique solution z =1 (mod S{)J For m = 2, the
congruence {
=g (mod 4)

is possible only if ¢ = 1 (mod 4 and then it has the two solu-
tums ¢=1lorz= —1 (mod 51)‘ For m £ 3, the congruence
www.dhrailibrar in
:c*a a (mo 2’”
is impossible unles&, =1 (mod 8). Buf if this couwdition is
satisfied, it ha.\fQWays four solutions mod 2= We shall
prove first that it*has four solutions once it is possilih.
Let & be on,e solutlon, so that

\ a® = ¢ (mod 27)
and%\aﬁy other. Bince z and « are both odd, the congruence
” x? = o? (mod 2m)

Ny
~\\s equivalent to
4 r+ o 2 —a

| o T = 0 (mod 2=2),
But of the two numbers
*r+ a T —

3 and 2:
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“only one is even and the other is odd. Consequently, Wl’ﬁh
the proper choice of sign %, :

A {mod 2%
ar N
2 = *a {mod 2m1); A\ +
. 2 A\
that is, N\ v
I = ia + 2m—lf_ % N/
. :“:\
Now, distinguishing the cases of odd and even ¢ we,h"a‘:ve onc of
the four cases N .“\\-
= a, T = —ag, r=a —i\g""q

= —a + 27t (mod K*i

Conversely, for each of them we hage ¥ solution of the pro-
posed cmlgzl uence, and sli four solumons are distinet modulo 2™,

It remains to show that for av="1 (mod 8) the congruence
& wrdbr aulibrary. oTg.in

= ‘@\(mod 2"}

18 possilile, and this we shall do by exhibiting explicitly one of
its solutions, followi ga’method of Legendre,

We shall startdswith the following algebraic problem: To
determine a polynomml

P‘(«t) =1 +rx1$+az£2+ T st
of degr&k\n for which the difference

\~”: Pya)t—1-—2z
\ ﬂf\’l&tble by ontt, T other words, P,(z) must be such that
Pz} — 1 — z = 271Q(2), 4

where Q(z) is a polynomial. On taking the derivative, we get

2P, (z)PL{z) — 1 = 2"R(2),
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whence, multiplying both sides by P,(x) and using oquation
{4) again,
2(1 + 2)P(z) — Pulx) = "8{x),

where S(2} is some polynomial. But since the degree of the,

left-hand side is #, this polynomial must reduce to o constahd;

“and so Y
2(1 + )P, (x) — P.(z) = cx™. O~ (B

\

Conversely, the polynomial P,(x) satisfying (B), gﬁfi?sn.lch that
P(0) = 1, will satisfy {4). To prove this, l"e‘ei’.\’\"

Pag) =1+ + JEIN

Then by virtue of (B) R \‘\\\“
(A + 2)¢'(2) — glePsveaPa(x). (€)
Since g() =0, g(x) is djvig}itﬁe by z. Let giz) = xof(x)
where f(x) is no longer gierij.as’llﬁlgl_éjl% %i_g_i(ﬁ)n substituting into

(€) and dividing by a:“w‘,m;‘iz have

laf(l + z) — x]f@) + 2(1 + 2)f'(x) = cavt' =P, (z),

which shows thaﬁé@ﬁnnot be less than n + 1.  For otherwise
the right-hand Side vanishes for ¢ = 0, while the left-hand side
reduces to 3, ()"

x'\ ud Olf([)),

. \Y .
whichdshot 0. Again, « cannot be greater than n 4 1 unless
¢ ='0,1n which ease we reach the contradictory result f(0} = 0.
Thus g(x) is exactly divisible by z-+1. On substituting

o &

\“ Pog) =14+ax + -+ + + auz”
in (B) and equating coefficients of like powers of x in both
members, we get for k = 0, 1, 2, ...,n—1
2k -1
Oppy = —q g, &y = ].,

2k +2
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whence
. — 1 — .-_1 = -—-—_.—3 "
= 2: &g — 8: O3 68: " "y

and, in general,

ap = (=1}t

1:3-5 -« (2 —3)
2-4-6 -2

N s

s @
Thus ihe algebraic problem is solved by the polynomga{\\"w
\/

Pux) =1 -1—%3 —%xz-i- e N
135 80 —9)
2 '

Y I,

5 a2
e

458 - - 2n
which naturally represents the =# + Liﬁl"ét terms of the
expansion +/1 + z by the binomial-t4hedrem. In Sec. 19,
Chap. IV, it was proved that OY

1:3:5- - (2= _ @

TETITA L = gmmt

2-4-6 ?:;ww%;?dbrau]i rary.org.in

where ¢ is an integer. Thén
{m;@z\k - 1)2% e
is an intcger, and Sois ’ '
AN, 2k - 2% ey
consequontiype '

N/
£
W

+ (— 1)

\’ ,
’\\..l ‘ ‘ ,
wherd\g;, is an integer. Now if we substitute 8 for z in P.(x),
the-resulting polynomial in r,
O P.(87),

will have integer coefficients, and the coefficient of r* will be
divisible by 2+, Then all the coeflicients of the polynomial

P.(8&) — 1 —8r
will be divisible hy 2+,

; _ &
b = Hyl
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Now if a = 1 (mod 8), we can set & = 1 4+ & from the
remark just made
P.Bry2—1— 8

is an integer divisible by 2t Consequently P (80N

exhibits one golution of the congruence A

{
z? = a (mod 2™) O

in explicit form.

Exzample. Solve the congruence 4

z? = 17 (mod 128}

%

by Legendre’s method. Here ;s — 7, and co\i"r\(;\}ﬁondingly
Puz) =14+ %x — %xj ;E.%x“ ~ 125
PiuBr) =1 +4r T‘:Br?“+ 3272 — 16074
Forr = 2, as in our cmﬂpld,bt}é‘t;"l;brary_org_in
P16} = —23 (mod 128),
and so the four roots ,u{ jfl}}te proposed congruence are

\ N\ +923, +£41.

17. Gegerﬁl “Conclusion. Combining the results of the
preceding séction with the general considerations in Hee. 7,
Chzx&'Yﬂ, we arrive at the following general conclision:
Ax ber a, prime to a composite modulus m, is & quadratic

residue of m if it is a quadratic residue of all odd prime divisors
~Lbf m and, in addition, if it is = 1 (mod 4) in case m iz divisible
\/ by 4 and not by 8, and = 1 (mod 8) in case m is divisible by
B. The congruence
z* = g (mod m)
is impossible except under the stated circumstances. When
it is possible, it has exactly
Qute
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solutions, denoting by x the number of dlstmct odd prime
divisors of = and putting

e =10 if m = 1 (mod 2) or m = 2 {mod 4}

=1 if  m=4 {mod 8)
c=2 if m=0 (mod8).

I

N

In particular the congruence O\’
22+ 1 = 0 {mod m) O

1s possible only if all odd prime divisors of m are ei( the form

4n + 1, and m, in case it is even, is not diV;SlbIs\by 4,

Agmn the congruence
z* 4+ 2 = 0 {mod m)\\“

is possible for an odd m only if all prﬁrm divisors of m are of
one of the forms 8r 4 1 or 8n + and the series of similar
theorems can he extended. &N

In case o is not prime to m, th@waé;@eyﬁlfgb;hegpowblhty
of the congruence

{“nz a (mod m)

cannot be stated so\sz\mp]y, and we shall not discuss them here.

18. Sclution of, Quadratic Congruences for Prime Moduli.
The gencral quadrahc eongrucnce

“\x'.\ re? 4+ sx -+ £ = 0 (mod m)
can bg&fjﬁaced by an equivalent congruence
,.\3."" (2rz 4 8)2 + 4rt — & = 0 (mod 4rm),
_Bhe solution of which in the last instance depends on that
of the congruence
2% = ¢ (mod p)

with & prime modulus p and a nondivisible by p. No expedi-
ent method for the actual solution, in case of a large p, is
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known. For moderately large p not = 1 {mud 8), the fol-
lowing method can be used with advantage, cspecially when
a caleulating machine is available.

First, suppose p = 4n + 3. By Euler’s eriterion

a*™t = 1 (mod p) O
if the proposed congruence is possible at all. H.enc?’.\:\'x}’
‘ a¥** = g (mod p}; ,,‘},&‘"’
that is, A\

Il

x ian-i-l (mod pl:w:\g"'
ig the solution, N
Next let p = 8n + 5; then by b]ulgr@riteriOi'l
a*t = 1 (medp)
so that either O
gl = Ql,’:‘(m()d Py
or RS )
TR
In the first case ~
[y = fa** (mod p)
is the requesj;,ea\}olution. In the second case we use the fact
that 2 is a ponresidue of p; then

PN\Y;
N 24t = —1 (mod p)
and;\;l
'h,\\~ 24ntgzntt = 1 (mod p),
_¥hence
O x = $3{4a)™ (mod p).
\.' Example 1. Solve the congruence

at = 3 (mod 227).

First we ascertain that the congraence is solvable as explained in See. 13-
Next 227 = 4- 56 + 3, and so

z = +3% (mod 227).
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It remaing to raduce *
35’-‘
mod 227 to iix absolutely least residue.  We have
57 =32 +16 +8 41
and
3t =3 32 =9, 3t =81, 38 = 99 A L
3% =30, 3% = -8 <\
whenee \3\ N
357 = —50 (mod 227). ,,‘}, '
Finally A\ 3
z = #50 (mod 227), '\i,"
. \{: )
Example Z.  Holve the congruence .
#* = 11 (mod 269). \\”

Here 269 == 3-33 + 5, n ~ 33, 2z + 1 =.6»7{e&1d

.
s W

i1 = 11, 112 = 121, 4’1 =115, 118 =44
11 = 53, 11%% = 1@ - 1iM = —96,
Henco T, dbraulibrary. org.i in
119 = L (mnc[ 269},
and correspondingly

Z
£ €} 449 (mod 26,

Now %\ it
4 N \
44t =53, 44bed19, 448 = 96, 449 =70, 445 =58
AN/
and o~
A& x = +77 (mod 269).

19. @V Exclusion Method. More convenient in pra,ct_ice
andApplicable to all primes without exeeption is the exclusion
'R{; ad for solving the congruence
’ * = a (mod p),
based on a simple idea of replacing this congruence by an
equivalent, equation _
a -+ py = oo
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Since @ can be gupposed to be positive and It.=: ihan p and 2
less than $p, we have to seek integers y, nsnaegative and
less than {p, which make a 4 py a square. Tt by far not
all such integers should be tried, and the g i majority of
them may be excluded. Let us take any nuralyer E, prime g\
p, usually prime or a power of a prime, and ok all of, its
quadratic nonresidues which we shall denote by 8. ',(\Jl?za}ly
all numbers y satisfying the cohgruences s W

L ¥
N
N

7
<

= od E
a+ py = 8 (mod E) (O

must be excluded from the trials. To find 3\t mplest way
solutions of this congruence correspondinito different valuos
of 8, let ¢ he a value of the fraction =%/p mod ¥ so0 that

a + pe = {’]:,(;nbd ).
Then N

“My.db@q%&fmwhﬁ) .

Supposing, for simplicity, E to be prime, and letting 8 run
through the nonreﬁiich}es of B, it is clear that y — 2 will run
through the nonfesidiies or residues of K according as pRE or
"pNE. In the fixst case all the values of ¥ to be excinded for
the excludent’Z are

»\\ ¥ =8+ ¢ (mod B),

ands'ﬁ)\the second case

&«
S

~O° ¥ =a+ ¢ (mod E),

Q¥

where « runs through all the quadratic regidues of F excluding
0. The case when the exeludent is a power of a prime can be
treated in a similar way.
The following tables indicate what values of y mod F
should be exeluded for F = 5 7,8,9, 11, 13,
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5 {mod 8)

1,244,578
£,5,7,2,4,8
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pN13
e | ! |
=0y 11 2| 3) 45| 6| 789 1 11|12
’ |
R R l__ -
1|2 3: 4| 5| 6) 7| 8| 910 ‘ 11 2] 0
8l 4) &7 61 7)) 8| 8110|1112 0 |3
4050 61 71 81911011 12| 07 1, 2N%
gl f11|12] o 1| 2! 8| 4! 5 Gl;T“ &
01120 1 27 83| 4] 5, 6| AMNS 9
120 0 1| 2| 3| 4] 5| 6| 7| 8 {Tg' HIN A

2,567, 8§ LN 13
=1,2,3, 4,5 6,788, 10,0}"12
72\

I

Bl &

1,7,9, 10, 8, 11, 2, 5, 3,'\4‘, 8, 12.

s§'

With these few excludents only"one or two numbers, on the
average, are left out of 1[1)0‘, a( the exclusmm themselves
can be ecarried out automa‘b?gﬁ ra'ﬁ’y Feans of mecimical
devices of easy construgtion. When the necessity arizss of
making exclusions out, -af\thousands of numbers, more exelud-
ents must be used “the process of exclusion is then carried
out by a complidated machine constructed for this THIFPOSe
by Dr. D. H{?Lehmer. The description of this machine
can be fou in Dr. Lehmer's article: “A Photo Flectrie
Number Bidve,” American Mathematical Monthly, 40, p. 101,
(1933)~

Fxample. Sclve the congruence
a\¥;
4
\ % =6 {mod 337).

To show the use of the preceding tables, we begin with B = 5. &ince
337 = 2 (mod 5) and

a é
_; =-;= 2 (mod 5);
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in the table lor B = 5, pN56 we find |, 3, Thuas all numbers = 1 or 3
should be exciuded. Similarly we find that for . i

E = 7allnumbers =0, 4,6

E = §allnambers =G, 1, 4,5, 7

E = Gallopumbers =6, 2,5 6,8

E =11 all numbers =0, 1, 5, 8, 10

E =13 all numbers = @, 1, 4, §, 11, 12 '.\‘\'
maust be excduded. In our case we have to make cxelusions out.:\o} the
nutbers w == 1, 2, 8, . .., 84. It happens that only oge’:}gumher,
y = 75, rorasing; correspondingly K7, \ 1

- N

83775 + 6 = 25,281 = 159%

80 that the proposed congruenee is satisfied by £ \\“

A

z = +150 (mody3&7)-

Exercises anf}fli'x:ol;l'ems
1, Bolve the congruences (o) x%l&dm@[%&}(b&rglf 4] (mod

258]; {e) »* = 73 {mod 1,206). X9

Ans. {a) L83; (b) £51, +4T; () £87, +125, 1523, 1611,

2. Bolve vhe congmancag(&) z? = 10 {mod 107); (b) 2* = 5 (mod 149).

Ans. (i £44; (b) £68\)

3. Devise g methoa\i}r solving the congruence z? = g (mod p) if the
prime p = 1 (mod 8) wnd one quadratic nonresidue of pisknown. Selve
the eongruence /4 7 = 0 (mod 281) by using the fact that 3aNasl.

N Ans. 2 = 67 (mod 281).
=11 fmod

4, Soh’gmﬁ)g} the exclugion method the congruences (a) z*
257); (B)et/= 87 (mod 389).
Am;:ﬁ:m +36; (b) +10L
B.38how that the number of quadratic residues in s reduced system for
e tﬁm posite modulus m is
N elm)

2ute

where z and ¢ have the same meaning as ip Sec. 17, .
€. SBhow that a number 4 BT, where A is nondivisible by an odd prime

. i8 & quadratic residue of p* under the following cireumstances only:

Q)
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(@) vevenand ARpif » < p; (b) » = u without any eondition co 4. The
COREruence
-z = Ap” (mod p#*)

has 2p"® solutions mod »* in case (a) and P2 solutions in cage (d).
7. Prove that the number of all quadratic residues mod P s O\

P — p o Oy
41 if even; LW
20 + 1) -+ 7 18 even; A\

4

P — 1 . s odd \ ~
m'l-l if 1 is odd. ."'( !
2 '\'“
8, Show that the gencral congruence of the seccncl:ﬂ}gree
et +sr 4+ = 0 (mod \
Fo

N

is equivalent to a congruence '\1.

ax? + bz + ¢ = 0 frim'zl mj,

in which @ is & divisor of m. Ifm =0y, where » is prime t6 o while

consists of the same prm\}\’e J&ngglgb l’ﬁglq %FE{I.?H of the congrionce

a5 |- b&c:-F ¢ =0 (mod au)
depends on congimences o{‘the first degree, while the congrucnce
¢ '\éus;—f-ba:-}—c =0 (mod »)
ean be replaced by, N
\J @ +ordr=0(mod v).

If rig even (w‘l}}éﬁ can alwaysg be supposed in cage » is odd), the last con-
gTuence ggn:\be reduced to its simplest form
'%QJ o\’ a?
A &x - - =
N + 2 +r z 0 (mod »).
N
\”\ ¥ ¢ i3 0dd and » even, then

4

22 + o) b dr — g2 = 0 (med 45),



CHAPTER XI

N

SOME PROBLEMS CONNECTED WITH ()
QUADRATIC FORMS S\

\

1. Object of This Chapter, Among the importamﬁ theorems
discoverest by Fermat and announced by him fepeatedly in
his correspondence, though without any dndigation of the
preof, mauy belong to the vast and intedesting theory of
quadratic forms. By a guadratic fo f{ s meant a homo-
geneous function of the second degréd in'its indeterminates or
variabies. According te the number of variables involved,
quadratic forms are classified a@’binary, ternary, guaternary,
ete. For example _oWhvw dbraulibrary.org.in

az® Kby + ey’
18 a gercral binary quadratic form in the variables z, y.
The forms \\
@+ g ay twz by, 8-y
are particulahtémary quadratic forms, while
"\x\ 2y, sy+A

exengﬁ%' quaternary forms,

_Bhe’ desire to prove theorems aunounced by Fermat led
~Jtiter and especially Lagrange to the creation of the arith-
Nmetical theory of binary quadrstic forms which later was

brought to completion by Gauss. Gauss also laid the founda-

tions of the theory of ternary quadratic forms, and'by ﬂ}"

combined efforts of many prominent men, following his

footsteps, a vast theory has been developed. In this ele-
325
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mentary book we cannot present even the comparatively
simple theory of binary quadratic forms and much iess can
we enter into the general theory. It must suffice to give a
fleeting glimpsc of the wealth of arithmetical truths, i:icluding
Fermat's theorems, which have their origin in the th Ty of \
quadratic forms. All that we nced can be preqe“!'
very elementary manner by develeping an idea w
back to Lagrange. Y

2. Fundamental Lemma. Let a be a positive’ Qor rrs_,ﬂtlve
integer but not a square, and m a number o{ﬁ hich « i4 g
quadratic residue, so that the congruence

n &
WA
gots

=a (mod m), :'

has solutions. Let N be any roof 0£ thlS congruence.  The
lemma, which is the object of this section, consists in the
following statement:

For some multlphe‘f"’}(“h'ébﬂéﬁégfﬁ* h8t&Hbeeding

Q VAT,
0O -
two integers x, y'ean be found satisfying the equation

L >

Am = 2 — ayb

and the gg\hé;ﬁencc
2\
\ _ z — Ny = 0 {mod m).

Mg)reover the greatest common divisor of x and y divide: both
~\Wand m.
We shall suppose at first that

[m| > +/$al.
As to the root of the congruence
N? =g (mod m),
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it can be token at the ouiset as not exceeding numencally
Lml, Since N? — ¢is divisible by m, we can set

hence
w Nt~ qa N
My = —
and . X :“\’\\..:..
i) < fml + lal, \,
=4 m A\ )
The inequality . R
bl
4 |m] O
o

is satisfied hy \{,
lm| > /[ §|0‘J}‘

a8 we suppose.  Thus [ma]| < [m‘h ”‘deuce now N mod my
to its ab=aiutely least res1duo %“10 hat

rauhbl'ary .org.in

N; x“ N &1,

where the integer § 1&%0 ehosen that

‘\’\ Nl < Bl

..t\s:w Ne—a=10 (mod ml),
we shall E;.)\{ a.lso &)

N2 — a = 0 (mod my),
50 thﬁ}\

\“ N — O = W12

<>nth some integer ms » 0. Again,

Since

!mﬂl !mli + |la']|

80 that {ma| < |ms| if

[m4] > ‘\/%ET
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Supposing this to be the case, we choose 8z so that
Nz = .Nl - ﬁgmg

gatisfics the inequality

[Na| = §lmal. N\
Then A
rQ.%%
N% — & = MMtz N v
N/
and |ms] < |mo| as long as ~
NG
ma| > +/4lal. \*7
Continuing in this way, we get a series of, decreakmo- positive
integers ' \\“

| > |ma| > jma] > | ??’&31\3' )
which eannot be continued mdoﬁmtf‘ly Henee the mimbers
\-.rww d]E’t‘auihm'al Y. org in

decrease numericaily up ’to:, uay, mutr, which is not greater in
absolute value than t&e‘ next following term my .. (O ncces-

sity ’ )
|7raga) = \/E]a},
while m, ml,\mﬁ,\. . . , my are all greater numerically than
2 /4],
“F"Ql\\slmphclty, denote miyy by A. Then from the equation
N Amy, = NI — o

\”\ tt follows that
Mg = (mezy + Nwye)? — ayi
is satisfied by 2z = 0, % = 1. Substituting here

Ny

Ny_p ~ Sy
and setting

Y1 = Zg — By, Zr-1 = Yy
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we have alzo

(Magear = Neoizpn)® ~ azf_,

Ay =
whenee
r = myi + 2N st + mpagd
and
Mttp_s = (Ma—afrea  Neatrm1)? — aydy O\’
hecause AN,
4 \

My = Ni_, — a. « N/

N ot bt ; X . N
Notiee thst g, 2ay are relatively prime, sincenws ‘and zy
Lo - g §
are. Substituting A\

.\\}
Nioy = Nis — Sp_atg \
AN

and setting again L
AN\
Yoz = 2e—1 ~ Sp_alfp—1, LD -2 = Yoty
we have RN .
. _ A 3 2 ]
Ny = (st SN iy
whenee, in the same way. fiS"Befom,
N\
Amyp_y = g@?zk-ﬂ A Ny sffre)? — ayi_o.
As to s, 2is, ‘Qhﬁ\r are relatively prime, since yr-i, Z—1 are.
Tt is clear t-hg,tﬂb%f continuing in the same way we find two
relatively prinfe integers v, # satisfying the equation
'\s.l

A\ am = (mz + Ny)* — ay®
Ifg@bﬁ& outset o
‘"\.f::z [m{ = _\/%W-
r\imd at the same time o
4 [m1| = \/%EGL

the reasoning and the conclusion remain the same. If,

however, B
imlt > '\/%_Ia[r
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then by what has been proved
amy = (myy + Nz — az?
for y and z relatively prime, whenee again
am o= {mz + Ny)? — ayl.
The algorithm whereby the numbers
z - me + Ny, ¥
satisfying the equation
Am = z? — ay? \:\
and the congruence \>
x— Ny=0 (mod}n\)

are found can be presented as follows
Starting with N
. oy \&dmw ull‘bl H¥=PrR in

determine by recurrenc;.(the sequence of pairs

Tr—1, Y13 Q&lﬁ, Y2} ce ey By Y
using the formliha@

Nl«— 3
Yi1y¢ =L 1y} Tt = MY + Ny
'\sl My
for 1 —‘”} E—1, . , 2, 1. These formulas ar: zasily
obta{ﬁed from the rela,tmma
,‘\;\ . Yo = 2, — Sy, Zi1 = Y
/by introducing

= mg; + N ilfi
instead of z,.

Since y and 2 are relatively prime, the greatest coramon
divisor of :

x=mz+ Ny,
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divides m. m the other hand,

2
A = me? 4+ 2Nzy + iz-\f—m—ayz,

whenee it 15 clear that the ge.d. of =, y divides A also. The

fundamental lomma is thus completely proved. N
Example 1. letustakea = —14andm = 113. The cﬂngrum‘me
N? = —14 (mod 113} . \“E’\
is satisfied by ¥ = 41, Now N
7 ¢ ’\
412 4+ 14 =113+ 15; my = 15, o
and ’\ ’
N, =41 — 153 = —4; Q\\e&
Again, AN
(—4)T 414 = 15 - 25 ) 2y = 2,
and since AN

£ )
2<z.f?

the operaticn: stop here. We hmae’%wﬂ dbfaplibris PSRty in
™S
A =41 . N ' '
= = r=113-1 41(—3) = =10
Y 5 WKA*Q" FA=3)
and 9

N \‘(\—m)fc +14-(—83)2=2-113
,w) —10 = —3- 41 (mod 113).

The multipid: 15}» =my = 2,

Enn}ﬂ{ Teta =71, m = 127. The congrucnce
\§’ N? =71 (mod 127)
!3 Eh‘tlsﬁod by & = 43, Now
Q" 480 — 71 =127 14;  m = 14
Ni=43-8-14=1; & =3

1" —7) =134- —5; mg= —B5,

Here the operations stop, since

5 <V
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Thusx = —5and o1 = 1, y» = 1. Next

PP Sk AL —48 1 3 p=127-1443(-3) = -2,
14
As it should be, 2\
z — 43y = 0 (mod 127)
and L\
(—2)2 — 71-(—3)* = —5 - 127. A~

3. The Equation z? — ay® = m. Integers z, y:?ﬁ@isi'y&ng
the equation 24

’\i."
r—ay? =m X

constitute a solution of this cquation. The solution is zaid to
be primitive if & and y arc relatively p}{ine. Sinee any other
solution ean be derived from primitive solutions of eguations
of the type RO :
't~ \'2= i
www,dlgj;%gﬁbraw.org.in
corresponding to varioug sqfﬁuc divisors ¢2 of m by multipiying
¢’ and ¥’ by d, it follews that we may confine our atteintion
to primitive solutigfis only.
For a primitive solution, y is necessarily reclatively prime
to m; hence ¢He tongruence
\*2}"' z = Ny (mod m)
d(:tqrn;mﬁs a class of numbers N mod m. By virtue of this
cangrience and the equation itsclf
.”\"
@ (N? — a)y®> = 0 (mod m)
or '
N2 = ¢ (mod m).

Consequently the previously introduced number N is a root
of the congruence
2* = g (mod m).
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If this congruonee is impossible, the proposed equation has no
primitive soiutions. In case the congruence is possible, all
primitive seiutions of the equation

x* — ay? = m, (4)

if they exisl, are distribuied into groups so that to solutions. N

of .the same group corresponds by the congruence O
z = Ny (mod m) (B
the same root N of the eongruence . ',,j' “}‘.
2=a@dm). &Y ©
Primitive sohitions of (4) satisfying the congruenee (B} are
said to helong to the root N, 9.\ Y

A remerkable relation exists between, sbiﬁhons belonging to
the same joot N of (0). Letz, y and :n, ¥ be any two such
solutions, Then

r = Ny, :L' ﬁ?’%dﬁ%ﬁll%y Dlgln

whence \ _
ay’ — z'y =0, .Q‘E’ = Ny = ayy’ (mod m),

AN

80 that O

Iy’ . ‘xkﬁ\z mu, ' — ayy’ = mi
where ¢ and « a.re"iﬁtegers Now the quotient
' —P\y*\/_ wz' — aypy - (xy rry)\/a

*yva @ = a?
but, be’&’iie
AN % — eyt = m,
{hgafreduces to
z+yVa

4 yve =t +uva)z+ uV/a). (D)

or
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Since +/a iz not a rational number, by changing +/z into
—+/a we have another relation,

¥ —yva =@ —uva)e — yVa),
and on multiplying both
2 — ay't = (* — au?)(x® — ay?) )y

or, canceling ' — ay’? = 2* — ay® = m U
B ¥

22— gut = 1. ~< y(E)

Thus, two solutions be]ongmg to the same Tbot of (£} are
connected by the relation (D) in which ¢ 3uid w arc iniegers
batibfying equation (X). Viee versa, for q\ry solution <1 {E),

; ¥ as determined by (D) constitute. K’prlmlh\’(, golution of
(A) belongmg to N. It suffices to show that z/, ¥ are rela~
tively prime and that N

@wdi}ﬂsaufmpﬁfy%g in

a:" - ay’2 =m

since the equation

18 certainly satisfied, ¢
By scparatmg t}\\ratlonal and nonrational terms in (13), we
get
‘.\2}’=tx+auy, ¥ o= ur + ty
and also N

"\" T =’ — auy, ¥y = —uz + ty.
H(,nce'\x and ' are relatively pnme On the other hand,
o \ 2 — Ny = t(x — Ny) + wlay — Nz).
\ But

ay — Ne =N — Nz = —N(x — Ny),
and so

¥ — Ny ={t — Nu)(z — Ny) = 0 (mod m).
Thus it suffices to know one solution belonging to the root N
to be able to find all of them if all the integers satisfying (£)
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can be found.  Thisequation is quite trivial whena = ~Aisa
negative nnmber. Then the equation

2 Adut =1

has only fwo sclutions, ¢ = +1, w =0, if 4 > 1; and four N
golutions A

t=41, wu=0, AN

t=0, = i]., ','.\"’
ifA = 1. Accordingly, the group of solutions belqngfng to the
same 100 consists of {wo solutions NS -

T Y —-x, —H '\\':
if 4 > 1, and four zolutions AV
Xy Yy =% =Y _y»x} ¥~z

A=

Wher: o ig positive and no@:@“é‘@’&"a?é’,"ﬁti&i%ﬂmm,in
N au® =1

is by ne means trivi .iw}t was proposed by Fermat in 1657 as
a chaliengo to English mathematicians of the time to prove
that the equatimi%'}ias infinitely many soluticns and to invent
a method f or:fh\e’:discovery of all of them. The challenge was
only p&rt,iz{fl} “answered by Lord Brouncker, noted statesman
~ and schidlar of that epoch, who invented a method for solving
FermalMs equation without being able to prove that. this
methed will always work., The first complete proof and
‘exhaustive discussion of Fermat's equation was made by
\‘agrangn in 1767, and his work stands as an oulstanding
achievement in the history of the theory of numbers. I.n Bec. 5
we shall reproduce Lagrange’s proof as easentially simphﬁed'by
Dirichlet. Equation (E) is often called the Pellian equation
because of a mistaken reference by Euler. Pell never was
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eoncerned with this equation, and, by all rights, it should he
named after Fermat.

4. Application of the Fundamental Lemma. Forparticular
values of @ the fundamental lemma of Sec. 2 yields a number of,
interesting and important theorems, some known alveady '$0
Fermat, others derived much later as corollaries of the zegeral
theory of quadratic forms. Here we shall consider il eades

a=-—1, —2, —3, —5, —7, reserving the cousi;lg{gﬁtion of
positive @ until after the Fermat equation has bepndeslt with.
Case-1. a = —1. We suppose that m_i& iny positive

number of which —1 is a quadratic residue Phen the multi-
plier A will be a positive integer less t-hazn\\:

N\
The only possible choice for )\'i.sfh = 1. Hence the equation
WO W, %Lgagbllgrygorg,jn (4)

has solutiens in inte@i‘s z, ¥, necessarily relatively prime
since their g.e.d. di{i:des A, and satisfying the congruence

r = Ny (mod m)

for any chodenroot N of the congruence

~\\ 22 4+ 1 = 0 (mod m). (B)
In Qt'%r words, equation {4) has solutions belonging to any
‘I:Qbf’ of this congruence. Therc arc exactly four solutions
ibélonging fo each root. Hence the number of primitive
solutions is four times the number of roots of (B). Now this’
congruence is possible only if all odd prime divisors of m are
of the form 4k 4+ 1 and m is either odd or double an odd
number. The number of its solutions is 2¢ if x is the number
of distinet odd prime divisors of m. Thus we have the
following thecrem:
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A number, which 18 odd or double an odd pumber, possess-
ing only ot prime divisors of the form 4% + 1, can be repre-
sented as the sum of squares of two relatively prime integers
in exactly 2:72 ways. Two representations

o=zt 4 y? and m = z'* + %

are considored as different unless ¢ = r, § = y. No numbér )
divisible by » prime of the form 4% 4+ 3 has primitive Teprese-

tations as the sum of two squares, AN\
In particular let p be a prime of the form 4% -]—'71: Then
the equation .”‘;\\
p = a? + b* ’

has exactly 8 solutions in positive or negﬁf}v’e integers a, b.
Disregarding the signs of @, b and this order in which the
squares wro Placed, we have the famdtis theorem of Fermat:

Every vrime of the form 4k -+ . R%én be represented as the
sum of two squares, and this rglﬁ;;ﬂs:@mféﬁﬁﬂ*ﬁa%i%y& n

The first statement of thd theorcm occurs in a’letter of
Fermat tn Mersenne, datéd December 25, 1640, and is reit-
erated soveral times imnthe ecorrespondence of Fermat with
other scliolars. Théchroof of this Fermat theorem was given
for the first time by Evler in 1754,

The numbes, of all solutions of equation (4), primitive or
not, is ihe aggrégate of numbers of primitive solutions of all
the equa{,{mé:

m
\ e

AN
toeresponding to all square divisors 82 of m. Now if some

ime of the form.4k + 3 enters into m in an odd power, m/ &
will always contain this prime divisor. Hence none of the
equations

z"’—’f-gg(?:;ﬂ.E
: #
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will have primitive solutions, and m cannot be represented as
the sum of two squares. Suppose now that all prime divisors:
of the form 4k + 3 occur in m in cven powers; then we can set
m = @*M A\
where @ contains oniy primes ol the form 4k + 3 and AL 4:911—
tains only primes of the form 4k 4 1 if m, as we shall a8 sifone

is odd. Then z, y in the equation A

N

’s./

x2+y2:m '.1.”

AN
must be both divisible by @, and the numbériof its solutions
will be exactly the same as that of N

Ayt = M~\ -
Denote by (n) the numbera of 1:00t=: of the congruence
2 4 0’ (m()d n).

www d ra.uhbrary org.in
Then the number of all solittions of the equation

w\ 2yt =M
will be 4 \‘ /
O M
N (%)
where thé\Summatlon extends over all square divisors of M.
But ‘thig sum has another very simple arithmetical meaning.
The@olutwns of the equation

o) y =M

AV

\/ again can be classified into primitive and derived solutions.
There are 2+ primitive solutions if M contains u distinct prime

factors and 2¢ = ¢{M). Consequently the total number of

sojutions will be
M
> w(gf),
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but on the other hand it is 7+(M)—the number of divisors of
M. Thus the number of all solutions of the equation

zt 4yt = QM

is 4+(M). Since m = @M is an odd number, one of the <
numbers z, y is odd and the other even. Bupposing y to be
even, the nurmber of solutions will be 2r(M), and it rcdch's\to\
(M) if =12 positive. If m iz not a square, y is differcnfsrom
0. Taking it positive, the number of solutions becoples+(M).
'In case M is a square = s%, s > 0, there is one sqlidion = = s,
¥ = 0, with ¢ positive. For the remaining %M — 1 solu-
tions y 1s different from 0 and, taking y _pdsitive, we have
(M) ~ 4 solutions with positive x and 4
Paying attention to the squareg ‘t}kmselves and not fto

their roots, and disregarding the og'de:r of squares, we conclude
that the number of partitions of JMrito the sum of two squares
18 .::WW.dbl'au[ibl’al‘y’_org,jn

37{(M) if M8 not a square;

37(3D {}— % if M is a square;

provided M has n ﬁnme divisors of the form 4% 4- 3. This
rule was also given by Fermat.

Let us take{dor example, m = 825 = &°- 13. Since there
are no prin{e,, divisors of the form 4k -+ 3, we have @ = 1,
M = 325xand 7(325) = 6. Correspondingly, there are three
partiti&{s" of 325 into the sum of two squares. Indeed, we
findyBy» trial

AN

QY oS =15 H 10 = 1T
For another cxample take m = 88,025 = 3*-5%- 137, =0
that Q =3, M = 65%, and (M) =9 The number of

requested partitions is

$+h=5
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They are

38,025 = 1952 + 0% = 1892 4 48% = 117% + 156°
= 09 4 1682 = 742 4 1802

N
The number of all solutions of the equation .
. SN
£t + yz = m ‘\ \"..

in all cases can be very elegantly expressed (t‘h:‘s;mxgh the
numerieal function O
d-1 “\

p(m) = E(_“]-)Tr v

where the summation extends ovqy‘\xal} odd divisers of m.
Clearly PAY;

| p(2m) = ),

so that we may copfine d‘%}lﬁﬁﬂﬁ’%‘r 10 r%gljg values of m only.
If all prime divisors of giare of the form 4% -+ 1, then for all
divisors d = 1 (mod 4yand p(m) coincides with r(m). If m
is divisible by a pringe p of the form 4% + 3, then we can seb
m = pm’ with @, Yondivisible by p. All the divisors of m
coincide with A\

N7 d,pd,pd, . ped,
lettinig“t\i?\'ifn through the divisors of m’. But since in general

& B s
\\ "\‘for odd P, Q the sum
(=2 4 (-1) 2 + - F+(-1 *
ig equal to
#—1

(-2 0+ (=D+ (=14 - - + (=19,
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which is £ if @ is odd and

il
(~1) 2
if gis evin.  Hence p(m) = 01if a prime p of the form 4% - 3
enters intn m in an odd power; otherwise N\
pl(m) = p(m’). RO N

) N\
By repealed application of this result we conclude that~for
m = @*M where @ contains only prime divisors of, ihe form
4k 4 3, while M has no such divisors, M\»

elm) = p(M) = r({M).

Referring therefore to the previously estq}hlshed results; we

see that for allodd m X 3

4P(m)
gives ilhic number of representations of the sum of two
squares.  The same 18 also »trut' fE’:r aﬁa !rfr@M kg For
hoth eguations

22 -+ o ~@> and 2t 4y? =20
have the same numl%r of solutions, since to any solution of the

first (orreqponds & unique solution of the second, and viee
versa, if we t\ak«e

\~. d=xty, Y=Y

When@e conversely
...\ > m} f x’ —_ y
Q” =ty y=tgt
Thus the number of solutions is not changed when m is
replaeed by 2m, and the same ehange does not.alter the value
of the function p(m). Hence we derive the elegant result of
Jacobi: the number of all representations of m by the sum
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of two squares is four times the difference between tie number
of divisors of m of the forms 4% + 1 and 4% 4 3, respectively.
Now that we have dwelt at length on the equation
22+t = m, ~
the other cases will be discussed only briefly. A
Case 2. a = —2. The multiplier X satisfies the ingz,({lﬁﬂﬁy

x < \/'gr o‘}'

< D

whence A = 1. Henee if —2 is a quadratic res\if:{ue of m, the

eguation

2t 2y =m O
has primitive solutions belonging to’;{n} chosen toot of the
congruence QO

22 42 = O’Qmerd m),
and to each root corrcsponds exactly two solutions. In par-
ticular if p is a prim%wefﬁﬂ%f%ﬁjﬁﬁ??%fr{fqgﬂ + 3 or of the form
8k + 1, and we considex otly positive solutions, the sguation

'i...}\ p = 2% -+ 2yt

has always one\énd only one solution. This is another
theorem stafoeixihy Fermat and proved for the first time by
Euler anddagrange.

Casgu\g‘}”’a = —3. The multiplier X now can have two
Valué\s{l’and 2, 80 that either
) ,j':'; 24+ 3yt=m
K
4 z* 4+ 3y? = 2m.

If m ig odd, the last equation is impossible, since when z and
y are both even or both odd, z? 4 3y is always divisible by 4.
Hence for an odd m of which —3 is a quadratic residue, the
equation

43 =m
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has primitiv2 solutions belonging to any root of the congruence
zﬂ—f—?)EO(modm)

and exactiy two for each root. In particular, for each prime
of the form 8k + 1 = p the equation
= g% 4 Qg2 \
Py <
has one and only one solution in positive numbers. Th)é 1t
the third theorem stated by Fermat and proved by F uler

fase 4. a4 = —5. In this case r\
- R
A< VE A\S;
so that X = 1 or A = 2, and the fundamensal lemma shows
that cither N\
2% 4+ Byt = m\Y
or bt
2 +5 %.“
while i Iy'“""""' dbrautibrary org.in

T = N’y (mod m)
'\
for each root of the cong ence
L 5=0 (mod ).

Let m he an oddmumber nondivisible by 5. Then necessarily

“\x'\s 0 _ 5
QY CIRE

audWy the reciprocity law

O\ -1
™ m 5
\. (—5—) ={—1) 2.

To distinguish between the two equations, noticeé that they
imply the respective congruences

m = 2? (mod 5) ot = —2%? (mod B5).
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Since —2N5, we have correspondingly

xﬂ + 5y = 1, g ,"\\V
but >

2t 4 by = 2mo,j\\v
if Nt

that is, m = 20k —l—“’?*’Hr%“% Yo &dfbvided that in both
cases —5 is a quadratic, residue of m. In particular, {or every
prime of one of the:\formb p =20k +1 or p = 20k + 9,
the equation ¢(\J

LA

™ 2+ 5y* = p

has one an(i\dnly one solution in positive integers, while for |
prlmes of,\she of the forms 20k - 3 or 20k + 7, the sams: is true
of the\equatlon

™

’ z? + by? = 2p.
<\)\, “Case 5. a= —7. In this case
p _
R < '\/'S'BE}

so that A = 1, 2,3. Now since —7Rm by the reciprocity law

(7)-
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provided m i odd and not divisible by 7. The equation
2 4 Ty? = 3m

3m -
() - N
or ' O

:,~\\ ~
(%) =L A
N

which is nat true. On the other hand, the equat@“ﬁ"
N\

\ 4

implies

2t 4+ Tyt = 2m
is also impossible, since 2% + 7y? is divi{ﬁlé\f)y 4 if it is even.
Consequenity the equation \$

e+ Ty = "
el G 4 &N '
can be selved in integers so y;l%timw_ dbrantibrary orgin
z = Ny (mod m}

for any rcot of the congruence

\\'%“5!— 7 = 0 (mod m).
provided m js odd and prime to 7. In particular, if p is
prime of one pfdhe forms 7% + 1, 7k + 2, 7k -+ 4, the equation
."\x':\.\s.o . p = o + 7y2
has o@’ﬁd only one solution in positive integers.
N Exercises and Problems
£ )
Y. Prove that for all primes of one of the forms p = 24k + L or
P =24k + 7, the equation

N\

ot + 6y* = p

hes one and only cne solution in positive inbegers.
+5o0r p = 24k + 11, the same ia true of the equation

217 + 3yt = P

For primes p = 24k
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2. Every prime of the form 40k + I, 408 + 9, 40k + i1, 40k + 19
can be represented in the form

p = 22 4+ 104,

. N\
and every prime of the form 40k 4 7, 40k + 13, 40k 4 23, 4} + 37 can

be represented in the form £ N\*
= 2z - 5% ‘\ e
« \/
and In one way only if z and ¢ are positive, (“:’g
3. Primes p = 1, 4 (mod 15} can be represented in 1;hf\, {dem
@t 4 152 = p, > "‘\

and primes p = 2, § (mod 15) ean be rcprcscphq\i;in the form
"

/

8x? + Hy? =X

in one way only if z and y are positiye. e
4. The number of all solutions of the equation
www . dhidulibrary .org.in
297 = 1

>3

2\
L0 -3
O 22(———),
b\ !
where the sum ,e;d;ends over gll odd divisors of n.
B. The number of all solutions of the respective equations

is expressed by

D7 wtspan 24mr=n

for z@;dfl n is expressed by

ad
&

& 2(7) 2(7)

the sums extending over all divisors of n.

B. Fermat's Equation. If m + 1 or more objects are to be
distributed on m places, at least two objects will occupy the
same place. This is an cvident and trivial prineiple which is
remarkable from the standpoint that in many cases it serves
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to prove quite difficult propositions. We shall use it-to prove

the following Jemma:
if £is a reut number, and r > 1 is any integer, then two
integers v and s ean be found satisfying the inequalities

is£—~ﬂ<%—; 0<szEr

Attribute fo x integral values 0, 1, 2, . . . , 7 and for eggh ”
of them determine ¥, so that N\
0ot~y <L, \\
We get thu- r -+ 1 differences g
p \.)
E - U ‘\x\..

all eontained between 0 and 1, excluding’'1 and including 0.
Divide the interval from ¢ to 1 into, ® eQual intervals of length
1/7: from ¢ to 1/r excluding 1/g} Mrom 1/7 to 2/r excluding
2/r ..., from (r — 1)/r te\ ixexe‘i&&ﬁﬁ'élblﬂrﬁmgur—f- 13
numbers ¢ — y are distriputed in ¢ intervals, at least two
mimbers QO

~y \S@d} 2t~y 2>

will fall in the same\interval. Then, setting

) :‘1:?;}_ xr = g, yr"f — y! = Jr’
we shall ha.x(e:,\"
,\\iw' 0<sET
and _\\
N H
N\
~ fsg = rf <2

since if two numbers belong to the same interval of length 1/7

their difference is numerically less than 1/7. hat
Let now o be a positive integer but not a square, so tha

/@ is an irrational number. By the lemma, for an integer

N

¢~ v
O\
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r > 1 two integers r, s > 0 can be found so that

Ir—sx/—&|<1—l_; 0<s=r.

Then also ¢
Ir + sv/al <§_¢—|—2r\/a O
and \;}\ i

Ir? — as?| <2\/a+ <2\/a+1n
m\\
That is, integers r, s, making r — sv/a ag sn’tall as we Dlease
numerically, can be found in an infinitc, Qumber for which

|r2 ——as"|<2‘\/a¥1

Let [24/@ 4 1] = g; then the»number of integers, excluding

l] between
w dbra,ullbl ary or

—2y/ Sva 41
wﬂl be 2. Take nrs 2g pairs of integors 7y, si) re, Se;
HE- sathhqng the inequalities
[-—q§21<2\/a—|—1 1=1,2 ... ,%
and so choseﬁ “4hat
I\ 81\/a| > |ry — spv/a| > [rs — sgx/al > -

The\dlfferenc%
NS

M\”; i — ast, 3 — as3, ey A EH (4)
" represent integers contained between —24/a — 1 and
2v/a + 1. Let these integers be Ly, Ls, . . . , Lsy, and leb

M, denote the number of times I, oceurs in thc series (A).
Then

Mi+M;+ - - + My =n = 2
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and the gre: ntest of the numbers My, My, . . ., My, is neces-
sarily = g°. That is to say, for some k = +1, +2,
+¢, the equation

2 —as? = j (B)

is satisfied by at least g* > g? = k* pairs of integers 7, s.

N

Let us agree to call fwo pairs of integers =, ¥’ and o', g .

congruent mod k& if and only if )

'\
£ Y
N -

2 = xf’ yu = f (mod k) \,‘:}‘

Then the number of incongruent pairs is k% a,nd\@mong the

£ 4 1 pairs 2t least two pairs are congruent. < Binte equation

(B) is satisficd by more than k? pairs, at lea8t'two of them,
" and ', ¢ will be congruent mod k,'\éo\bhat

72— gg’t =y’ — aﬁsi? =k,
o=, 5 & {mod k).

Moreover, wo can suppose thg"ﬁ‘ww“" dbraulibrary org.in
,. o S”".(ai < t,r __ s'\/a|
Consider now thee ﬁa’ment
R
- x’\/a y ' — as’s” + ('s” — ?’”8’)‘\/5'

T 3"’ a{ ok

r
By Vll‘tl\?}{}he congruences ¥’ = ¢, s = ¢ (mod k),
r! ‘A\}sf S o=t gst =0, ¢ — s =0 (mod k)
S\ﬁhat '
N

_r,"rH — asfsf) TISH . rl’fs. ~
k - ok

are integers and

(0~ ¢/ = (" — VO + ua),
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whenece

e

2 — §'% = (12 — ") — au?)

and, canceling r”’? — as”% = "2 — g8’ = k = 0, we save
2 —au =1 O
§ \
Pre Y
It + un/a| > 1, o\

N/

so that u = 0, It is thus proved that Fermat’s eqm}& &n

Besides,

22— au?=1 ,'\\“

has solutions in integers distinet from thw ’mua selution
t=x1,u=0. AN

Let T and U be the two smallest positive integers »
Fermat’s equation; they constitute Abe/so-called funs
golution. H ¢, « is any solution_ m *posﬂ:we integers.
from the fundamental solution, #hen » > U and

R
Cousequently, in the s‘ie{ies of powers
T+ UVt UV, (T + UVa),
there are two corfsecutive terms such that
(T R U’\/a)“ =t +uve < (T + Uvai
\~\" (T = UNVa)(T + UVa) =

W"e\\‘ean write also
Q 124+ ualT — U\/a)"<T+ U a.
\Now

(t + w2 (T — Un/a)"

can be reduced to the form p + ¢+/¢ where p, ¢ are integers
and

tisfying

Bince

p*— et =L
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Consequently
1Sp+ove<T+Uva
and
0<?~UvVa<p—gvasl

Fram these tuzqualities it follows that
L\
7 >0, 0=qg< A N
As to g, it <annot be positive; otherwise there WQU\I)'{] be a
solution in positive integers smaller than 7, U,/ »Fherefore

p=1,9=4u and ,'.\\"
t+uve = (T + Uv’&')g;
In other vwrds, all solutions in positj,v‘ésfntegers result from

this formule forn = 1, 2,3, . .. .o\

N/

It > 6 v <0, then R\
f— uy/ E“-:%:W“Fd%@wfﬂry.org.in.l
for some positive n, wheyree
Ny s
i+ uva =\ff3 — Uafa) = (T + U/a)y™
Finally, from agy, solution f, u the solution =*%, i‘ﬂ with
+t > 0 resubiddfrom a proper choice of the sign . 'Ihus_ all
the so]utiqmé..éf Fermat’s equation, without any exc.eptmn;
are obtaifisd from the fundamental solution by equating the
ra-tim)@\,ﬁd irrational parts in the relation
Ay {4 un/a = (T + UV
N\ ' N -
it which the signs are chosen arhltrmly a':nd n == 0% i]&
+2, . . .. Asto the fundamental solution, it can be ’ound
"by a very convenient process based on the use of co?tm:;ia
fractions, but we cannot enter into any details concerning
Ppoint,
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By trials one finds the following fundamental soiwiions for
a =23, 5:

™_2r=1; T=3 U=2
™_3Ut=1; T=92 U=1
™ —5U=1; T=9  U=4

Oy
6. The Equation x? — ay® = m with Positive «. Wihave
seen in Sec. 3 that the primitive solutions of thls £ 4! mtlon,
belongmg to the same root of the congruence O
- Qg
22 = a (mod m),

are obtained from one of them z, y by means of the relation
R
¥+ Ve =t + uv @+ vV ),
where {, u are solutions of Fermafls-equation

wwﬁ.d‘!aiﬂiﬁﬁb?a}y,org,jn
Bince N\

t+uvia'= (T + Uv/a)»

for either one of t 6\isl"g};ns forms a geometric progressicn with
the ratio T + TN/ a, it 1s easy to see that in & group of soh-
tions belongingbo the same root there will be a unique golution
singled out\by‘ the inequalitios

J’{f\(T T UVR <z Ve £ M(T + Uv/a),
ﬂg&,bemg an arbitrary positive number. Supposing m > 0,

<‘§v€' shall take M = +/m; considering that
2? — gy =
the preceding inequalities will be entirely equivalent to
@~ yVa(T - Uva) <z +yva )
£ (@ — Vo) T + U/
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together wit:
z 4+ yva > 0.

On simplifying them and noticing that

T—14+Usa_ Uy

TH+1+Uva T+1 ,
‘\\..
by virtue of the equation . O
T2 — qU? =1 N
’ \ ¢
we find o 3
U U o
. < )
T+1° VS THLN
. . PN
where nece-zarily z > 0. Since LV
N -
2+ yvVa > (T 91— UVa)
T+ 18

R
N

,\3’%;\» dbraulibrary. i
Qj::k’ U‘\/:ti ary.org.in

& _
\\v +yva >0
will be also fu]ﬁgeﬁS ‘Consequently, from all solutions in the

group a unigye solution is singled out by the inequalities
A/

andg

the conditinn

A I v .
A\ R Al |
Com@ d with the equation itzelf,
:..\3{‘ 22 — qy? = m,
’ 2
2 = ____,H_xﬂ
FEmA ATy
or

\/ﬁ_s__xg\jTg'lm,\
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which for = 0 is entirely equivalent to the origin:! inequali-
ties. For y 2 0 they can be also replaced by

Tr—1

0 —om

IIA

¥ =

Now we shall eonsider the particular cases: ¢ = 2, 3, 5\‘ v}
Case 1. a = 2. The multiplier A in the fuu g Sadntal
lemma, satisfies the inequality N

_ £ ‘\‘
N < VG, NS

and s0 A =1 or A = —1. In case A Zooeld, integers 2,
exist satisfying the equation RS

2’7 — 2yt = Oy,
and the congruence A\

x WW@JLﬁlﬂbﬁquonp)m

for any root N of the congruen('e

(3% = 2 (mod m).
But we have 1dent\ally

2= )P — (@~ ) = o — 2
and N
}"\"~
o~ NG - ) =7 Ny + N - NY)
u‘v\ = 0 (modm).
Hejee
O” r=d =2, y=y -7

4

is a primitive solution of the equation
2 — 2y = m

belonging to N. The existence of such a solution in case
A = 1 follows directly from the fundamenta} lemma.
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Thus whenever 2 s a gquadratic residue of m, there are
golutions of ‘@2 eguation

2% — 29t =

belonging to nny chosen root of the congruence

2* = 2 (mod m). A
In each grouy: of solutions belonging fo the same root, thepe 1;
one and only one for which ~\

—fr <y =3 ,\\
In particular. for every prime p of one of th& }ormh 8k + 1
or 8k + 7, tie equation N
— 2y = p \

hag & unigie solution in pomtwe m‘Eegers satisfying the ine-
qualities

z }‘Q?}\'ﬁvw.dbrauljbrary,org.in
equivalent to \ ' .

Aﬁ’<z<\/2p

or to \J
N
\ y < Vip %’P-
For the congylietice '
A\ 2t = 2 (mod p)

has twg_tbots, N and — N, and if the solution z, ¥ in positive
mtegfi}g belﬂhgs to N, then «, —y belongs to —N.

\Oase 2. a = 3. In this case
s 2
and o there are four possibilities

(@ 2?3y =m, ()7~ =—2m
) 22— 32 = —m, (D)2t =3 = 2m

N
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while
z — Ny =0 {mod m)

for any chosen root N of the congruence.
22 = 3§ (mod m).

We shall suppose that m is odd and prime to 3; then ;c“{ﬁd)g}
are necessarily relatively prime. In all cases Q

L 3

m— I’N‘%
m 3 '\,\»\\

. AN
() - 1"

A\

while in cases {¢) and (b)

L D
N/

whereas in cases (c) and (&)  _\
&N
wwv(@"b aﬁ;_ﬁbialry.org.in
S .
Thus if 2\

e ()

thatis, if m %gl;‘(“f‘nod 12), (a) and (b} are the only possibilities;
on the cop,@i‘g;y, {c) and (d) are the only possibilities if

\{'\'i. _
~ —~1) ¥ = — L
,;x\\ (=1) ! (3) =
(hat is, if m = —1 (mod 12).
N In cases () and (d), z and 4 are necessarily odd, and we

can set * = 2z + y, which gives
(y —2)? ~822=m
corresponding to (b) and

y—22—-3822= —m
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corresponding o {d). Now

— AT ;;u_:_“__,__,______ $#y=&ﬂ_ x_y
y-ro Ne= oty N =773 g

N{Ny — =) + %(Ny — 2} = 0 {mod m),

. . - 4
and o we conze to the following eonclusion: : L)
I m is an odd number prime to 3 of which 3 is a quadéaie

residue, then ju ease m = 1 (mod 12), the equation
- P A p |

5o 50
2= 3yt =m \:"\.\\
possesses solutions belonging to any chosen %00t of the con-
gruence I /
= 3§ (mod m) \

while the saiic holds for the equatmxr

e — 3y”www@b1 "aulibrary . org.in

incase m = —1 (mod 12). En the group of solutions belong-

ing to the same root, tl\ﬁw is one and only one solution for

which (\J
.‘\\\ Jr <y =4z
in case of po-aiﬁ\ig“-;;a = 1 (mod 12} and
,.‘\“' -y <z 2y
in cas &‘ positive m = —1 (mod 12). The proof of the Jast

Btat@ment 1s left as a problem for the reader.
P *Ih particular, for every prime p =1 (mod 12} the equation

o

-3yt =p

has only one solution in positive integers satisfying the
lnequahty

y < V3P

N
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or
Vp <z < vV3p.
For a prime p = 11 (mod 12), the equation
N
3z  —y?=1p AN
£
o\
hus only one solution in positive integers in which \:,\ “
Y e
v < /I O
‘&Y

Case 3. @ = 5. In this case AS)
N\
|M <'@r x?\\"

sothat A = £1, A = +2, The eqﬁﬁﬁons
- 59'2 %«+2m
', however, impos¥itité %W%blaaé B8 50 only two cases

remzun
{a) x* — 51;2\— m (b) 2? — 5y? = —m.
\l
But in case (b) N g\

\;(% ~ 5y)* — 5(2y ~ =)? =
and "\sl

L W
2z ~§¢i\~ NQy — 2) = 2z — Ny) + N(z — Ny)
N\

= 0 {mod m).
I{im% is, equation

Q’, Tt — 5yt =m

has primitive solutions belonging to any root of the congruence
= 5 (mod m)

provided m is an odd number of which 5 is a quadratic residue.
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In the group ol solutions belonging to the same root there is
only one solutizn for which

~fr <y = 32

In particular, every prime p = +1 (mod 5) can be repre-, /A

sented in the form N
A\
'S\
« N\

and in one wav only if 2, y are positive and N

p =z — by’

¥ < ,\/%E '“’"\&'

7. A Test «f Primality, The parti(:ular\edqua;tions of the
form D
2 — ay? = m)

studied in S:es. 4 and 6 possess prig";ifive solutions belonging

to each root i the congruence oi .
A0 Taswww.dbrautibray .
AN Y.org.n

2% = a\(mod m)
whenever the latter is gessble. In consequence of this, the
prime numboers of w@ic:h g is a quadratic residue can be
represented by tha, fﬁ-m
N 2* ~ ay®
in one Wai-’*b\.ﬁg* with positive z and y limited by additfona.l
imqu"’*lit@&”i’n case & > 0, while composite numbers either
have go'such primitive represcntations at all or more than
ongaoF else have imprimitive representations also. Hence we
‘detive a new and cfficient method for testing wheth‘er a given
.\llimbcr is prime or not, and often ean even fat':mrme m if 16
i8 not prime. For if there are two representations

! — gst =yt — ast = m

of the roquested kind and one of thems belongs to the root N,
the other must belong to another root N’ of the congrusnce
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z* = a {mod m)
different from N and —N. Then since
(N + NYN' — N) =0 (mod m), A\

while ncither N* 4+ N nor N7 — N is divisible by i, the g‘:q.d.
of N — Nor N - N and m is a factor of m. Dut fmui “the
cohgriucnces \

r= Ns, v = N's' {(mod m):\ ‘
it follows that ?)

rs' Fr's = (N T Ns¢ {mrod m),

and ss" being prime to m, the g.c.d sf)’f;\rs’ F r's and m will be
the same as the g.e.d. of N 7 N'Gand m. If it happons that
m has no representations by.the form 22 — ag* then m is
eertainly composite,whm-‘a@;;@gm}@a%mf e must b2 sought
elsewhere. Qe

The guadratie forms"

<\
{a) = + 34\1{;’ (b) z* -+ 22, (&) x? — 2¢t

suffice to test alNntegers. That is to say, integers = ! {mod 4)

can be testedBy (a); integers = 1 or 3 (mod 8) ecan ho tested by

(b}; and jgtebers = 1 or 7 (mod 8) can he tested by {ch
Anothér group of forms

O (@) @* + 4%, (B) 2* + 3y,

N

NS (c) 2 — 3y?, (d) 32 — y?

) can serve the same purpose. For numbers =1 (mod 12)

can be tested by (a), (b), (¢); numbers = 5 (mod 12) by (a);
numbers = 7 (mod 12) by (b); and numbers = 11 {mod 12)
by (d).

8. The Exclusion Method. The testing of a given number
for primality by the method explained in the preceding
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section requir:.. *he solution of equationé of the form
J22 + gy = m

in positive integers within a certain range.  This can be done
by trials greatly abbreviated by the exclusion process similar to
the one descriixed in See. 19, Chap. X. A number K, usually a

small prime o1 power of a small prime, is taken as the exclué )\

dent. The euation N
fe' b gyt =m P

is certainly wnisossible if the congruence ¢%¢
fr? + gy* = m (mod B}

is impossible.  Henee all the values of,\m'\’\}s'rhich make fhe

fraction 'S
m — fz2 )
g A

coagruent micd F to a quadr@tié"‘ﬁ‘iﬁﬂr@&[’fﬂﬂiim@dyﬁu‘gmt be
eliminated. T'he application“of a few excludents reduces the
tumber of values of z so Gonsiderably that the trial of remain-
ing values iz not (busdensome. To facilitate the use of
excludents, it is goqd\bo have short auxiliary tables from which
values of « to jp-gxéluded can be found directly. Such tables
are given ha:ﬂ:{ %Or the excludents E = 5,7, 8, 9, 11, 13.

S X E =5

,;\ ~fgR5 —fuNS
PR Y g |
RN ! | ] |
A ' ‘ oy o2l 3| 4
A'\:j.l 1 ; 2 3 i 4 I =1 i I
\ } ; o [
X I_ et Rt N | ‘
2! ol o ‘ 1 0, 1 2 0
3 o2 r, 4 4 IJ' 3
3 4 A
N | | L
N

N
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=7
- —fgR7 - JaNF
m12:34516m1|2!'4| ﬁ
ok i : —=1" G a
0 ‘ 0 ‘ 1 o! 1| 2 A N0
2113|371 2|3 871
5 6‘4.4 5. 4 il s
6 ‘ 6 ‘ 5 )
1,2, 4R
E =38
~fg=1(mod8) —fg =5 (mod &) —fe=s7
imod 8)
" | | icd | | 9 wE
— =178 57 — =1, 3 s\ -=1 135
7 | ‘ n | & f
' T .db "I‘l 5 -
ofoof i | oY R 2 |0
201|922 ~272 9 614
4|3 43 {\4 3 4/ 3 EEE——
61465 |.OY 6|5 8 4
RN 6 |5
TN A
1\ E
N —fg =246 (1mod 8), f odd
\x:\“' 0, 2, 4, 6 (mod 8) are excluded.
\ f=2 4,6 {mod 8
’\\ m—g
’,:.’ ¢ value of the reduced fraction mad 4 or 2
e N
\,’\ c=10 ‘ I
10
32
5| 4
7186
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! I B,
m_fA 2o .‘ \.\.“
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—fgN13

| |
1 2| 8| 4| 5| 6] 7|8, 9j1w 1 12

b _ 5 o
0 11 0 0| 1| 3| 2 2.0{0!1.0‘
2 4.2 1| 2) 4 40 3 5 01 5AZ
6 5 5| 4| 3| 6| 6| 5] 6; 3] M4
7 8, 8| 9fto| 7 7| 8!l 7103 9
11 g 1 e2ln| ol 9/1w' s 39.:1 s | 10

12 BPARTNE T IS SR N g'm‘
i L o E & :
2,567 8 11 N N )

We shall illustrate now the use and efﬁc{eucy of the exelusion
method by a few examples.

A
Ezamyple £. Find whether or not 504 321 is & prime number. Binoce
50,321 = 1 (mod 8), we can use the three forms

4t vyt dbﬁt&l—ﬂ'ﬁfﬁ}'y orglin 22,

Let us take the first, A(,wrchng]y we must seele all solulions of the
equation \\
.\x\; 4zt + y2 = 50,321

in positive 1ntege‘rs.\ Evidently

¢ N \ } 2t < %,
x'\’ / ¢
whmh\{’qg)).vs that only the following values of £ must be tried:
‘y\:;\ =123 .. .,12
»\’V

“The greatest majority of them will be removed by applving the axelud-
ents 5, 7, 8, 9, 11, 13. We have Ff=4¢g=1, —fg = —4& Now for
E=5

—fgR5, ? = =4 (mod 5).
By the corresponding table, values of z = 1 or 4 (mod 5) must be £x-
eluded. Similarly for other excludents we have

Hee | =
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Numbers to be
excluded =

E=T; —JgNT; 3;-} = 3 (mod 7) 0,25
E=8§ 1,357
E=9  —fgNo; ? =5 (mod 9) 0,36 N

m ’\ \’
E=11; —fgN11; — = 10 (mod 11) 0,25¢69 \\ 4

f - \ \/
E=13;  -—jgRi3: ? =6 (mod 13) 01,25 84042 ¢1~’«12

The numbicrs congruent to the underlined numbers o “ﬁh} respectWP
moduli must e excluded. The exclusion process itselfNs Garried out by
a gimple mechanical deviee, and out of 112 numbg;g}t}leaves only three

10, 32, 62 N\

to be tried.  On trial it is found R WV
50,321 — 4-10% = 219@21

50,821 — 4 - 328 S beaplgbrary. org.in
50,321 — 4 - 635 % 34,045,

and only the middle nu.mber s%\ aquare. Hence
\\5\0321 = 2157 4 64*

is the sum of two relaj; yely prime sguares in one way only; quuenﬂy

50,321 iz u Dﬂmemmber
Example 2..7¢"34,579 a prime or not? This number being =7

(mod 12), Wespan use the form
s‘l
: Y Bzt oyt
In thewiiation :
~S 3a* 4+ g = 34,579

\/%;_9 - 107+,

and only the following values must be tried:
xr=1,238 ...,1070

Y ; 2
\33\5 Yéss than
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In our case f = 3, g = 1; the exeludent 9 cannot be usel, as it is not
relatively prime to 3. For the other excludents we find

Te be sxveluded

E =5 —fgN5: ? = 3 (mod 5) 2,3 N
)\’
E=T7  —fBT; B =2 (mod 7) 0,1,6 &M
’ 7 o e ‘.\\
« \J/
E=8  —fj=5; ? =1(mod8) 0,240
P
E =1l; ~feN11; = =2 (mod 11} \»ufh 3,6,7
f N -
\Y;
E =13  —jgR13: %" = 4 (mod {3:“)\ 3,5, 6,7, 8, 10.

X

After the exelusions only the followmg numb(,rb remain:

5, 25, Bo &79 84,

and on trial we find www.dbrau Ibrary org.in

.‘,

34,579 = 148=+3 652 = 1042 + 3 . §9.2

Hence 34,579 is a oomp&lte number, and itg fuctors ean Lo found as
shown in See, 7. Ts{ ve.d. of

L) 14889 — 10465 = 6,412
and 34,579 bem\g 229, we have
\
34,579 = 229 - 151,

wher\\r’rh factors, 151 and 229, are primes.

Exzample 3. Ts 100,033 a prime or not? To test this number we shall
ﬁe the form

= 2yt
Accordingly, we seek all solutions of the equation
@ — 2y2 = 100,033

in positive integers, confining z to the range

/100,033 < z < +/200,066.
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As
A/ 100,033 = 316 +, /200,066 = 447 +,

only 131 values

z =317, 318, . . . , 44T
have to¢ be sutunitted to trinls, For the excludents 5, 7, 8, %, 11, 18 we \
find: :“\~
To he exduded‘ N
" . O
E=a; —fa¥b; — = 3 {mod 5); 2,8 A
! — W\
E=7 1R, =38 (mod 7) L8Y
=7 —feRY; =38 (mod 7); :
o4, 7 A
= 8.} .Q) 2! 4) B
" >
E =94; —JgN9; 7 =7 (mod Qi \‘ ,2,7%8
Eo= 1% —fgN1L; }—” =10 (;:god‘ 11);  0,2,5,6,9
O \M\a\r P
E =13 —fgN1%; = 0 Gnod Butibrany e n12,

After the exclusions only
}329 355, 399

remain to he toed. M11d

3551 — 100,033 = 2 - 1143,
~‘.\) 3092 ~ 100,033 = 2 - 172%
or \sl
\:\,‘100 033 = 3531 — 2 - 1147 = 3997 — 2. 1722

Since ﬁ!@g,c.d. of
¢ \ “

\:}i& 100,083 is 599, 100,033 is & composite auraber divisible by 599; and
n fact

355 - 172 — 399 - 114 = 15,574

100,083 = 167 - 599,

Exercises and Problems
1. Every prime of the form p = 24k +1orp = 24k -+ 19 can he
represented in the form
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= z? — Gygy

and the representation is unique if z, y are positive and y < \/ I
Every prime p = 24k + 5 or p = 24k + 23 can he represcnted in the
form N
p = bz* — yg’

,—< \

and the reprcsenta,tlon 1s unique if z, y are positive and z < \/\

B. Every prlmc p =28k +1,p=28:+190,p =28k + ;.) hag unique
representation in the form ( S ‘.

p=a =Ty ?

— m\\
with positive z, y and y < \/ AS

Every prime p = 28k + 3, p = 28k + 19, p ~\28% + 27 hus unique
representation in the form NG

p =72t — 2 L ©
) 3

with positive @, y and 2 <« \/Hp O
3. Every prime of the formp = 4{Io’c 5t 1, 40k + 0, 40k - 3, 40k 1 39
has unique representation in the £0‘m:ﬂi~
W W dbpﬁu.l{bra{a{ org.in

with positive x, y and y <\\/ S5 )
4. Every prime of tvﬂ‘e form p = 60k + 1, 60k 4 49 has unique
representation in tho€orm
h‘{{ p = z* — 15y

with positive x y and ¥y < \/ Lup-
Every prmm of the form p = 60k + 11, 60k + 59 has unique repre-

sentation ’1’\5113 form

\,, p = 15zt — y*
wu;h\mmtlve ryand r < \/_

~5 Prove that the number of all solutions of the equabicn

‘,l

— 2y2 = i
with z, 4 subjeet to the condition
—jr <y <=
is
d-1
2('_1) 8 )

the sum extending over all odd divisors of .
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8. Test which of the numbers (g} 48,779; {b) 198,88%; (c) 262,657;
(d) 167,669; (¢} +79,818 arc prime. Ans. () Prime; (8} Composite,
divisible by 59; (¢) Prime; {d) Composite, divisible by 107; (¢} Com-
posite, divisible by 237,
9, Another Application of the Fundamental Lemma. Lct
m be an odd number, relatively prime to @, of which « is a
quadratic residue. Then a will be a quadratic residue of any, ()*
power mi for ¢ =1,2,8, ..., and by the Fundamenpal
Lemma we shall have N\
b = 2% — ay® : \\ {4)
with O
: — Ng = 0 (mod »¢
z— Ny =0( ) N
for any chosen root N; of the congruence & &

X
N? = a (mod m¥ )"

"

Morsover, N
‘M < )&M.dbl'au[ibral‘y.org,in
and tho g.0.d. of 2 and ¥ divides m* and M. Taking for ¥1-an
arbitrary root of the congruyénce

\N{E a {mod m)
and choosing N?z”j,\z‘-*; Ny ...fori=234...850 that
J\rz = }\71 (m()d,'m);s\Na = Ng (mod mg). N‘i = Na (m()d mS)’ P
o get as n—%a,\f&"i'e]_&tiﬁﬂs Df -t{he type (A) a8 we hke. I;Bt

e !
therlr«{i‘}ﬁbe » eannot = 0, the number of possibl.e values of :
@tbﬂ: 2¢g and none of them will exceed § numepcally. Take
{/1,2,3, . . ., 2g* then among the 2* relations (4) therg
will be at least g relations with the same mult:phgr A, an
among these there will be at least two:
amE =zt — ay’ (B)
Amd = a't — oy’
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for which
=z, y' =y {mod A)
and
oy’ — 'y = 0 (mod \). ~

On multiplying (B), member by member, we have A

AN
NF T = (zx’ — ayy')? — a(zy’ — 2'y)%, O
whenee it follows that ...,:}”5

zz’ — ayy’ = 0 (mod )\)\ N

so that the quotients \\\,
rz’ — ayy Ty \- 'y
A ,:;“'7\
arc integers. Let R\Y
E’ —}\ uw,g?@fhl‘awfoig.@f_y — s

where ¢ and u are r%a‘ﬁ\fcly prime; then
\\m’"'”‘ = 3% — au?),
and we are @1}1{; to show that

i"\:.{'
if &, %iﬁ a5 We ¢an assurae.
wﬂ)\note by d and & the ge.d. of % ¥ and @, y/, respec-
z”’bl?ely, and notice that A is divisible by both 4 and d’. The

b= m*

\ ) wngruenceq

' = z (mod o), ¥ =y (mod d)

show that z* and ¥ are divisible by d; that is, d’ is divisible by
d. Similarly the congruences

¥ =z (mod d'), ¥y =y (mod 4}
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ghow that d i+ divisible by @’.  In consequence of this, d = d.

From
'

ax’ — ayy’ = A, oy — 2'y = Adu,

it follows that

QS
(x2 — ay®lz’ = A3tz + ouy),
(z? ~ ay®)y’ = NelQty + wuz). O
Now \3\ ”
amt = 22 — ay® “,\‘
and z, ¥ arc divisible by d; hence (¢
SN
mir =0, mby =0 (mod 8N\
and also . t:\\)
m(z'E 4+ y'ny = 0 (medd)
A P4

for arbitrary integers &, . Since tHec.d. of «, y' is d, the
integers & n can be chosen o thafl®
2t oy gdbraulibrary org.in

*

and then
m:»\i\a ¢ (mod &);
that is, m* is d.i\’iéib\g'by 5. We shall show now that & is
divisible by m#, ¥hich then would lead to the eonclusion that
b= m*. A\ '
Let x'\;“;

’&‘”ax, y=dv; o =X, ¢ =d¥}

AN % L mEA
~\ Xt gV? = %_:\, X2~ o¥? =~

" 4
Since X, ¥ as well as X, V" are relatively prime, roots T and

r
I' of the congruences

¥ am¥
M=a (mod Ld”:;), I'=a (mOd _RT)



372 ELEMENTARY NUMBER THEORY
can be chosen so that
. o
X=rY (mod ";’Z’) X =1y (mod j;_) (©)

A
On the other hand,

PaY;
z = Ny (mod m*), ' = Npy' (mod 'ﬁ'ﬁ")\"\t\ ’

or N

M

/ N ‘
k \,
X =NY (mod "%) X' = NeV’ Qrm m”

On comparing with the congruences 11},{@) and remmembering
that ¥ is prime to m*/d and ¥’ prime'\fie m¥ /d, wo conclude

)

E Y
=N, (mod 'n;) K I‘ = Ny (mod e )

www. dbr &\!l,l.bl'al. ¥.0r
But for ¥ > k, by the manher in Whlgh N, N ... are
chosen,
\;Vy = N; {mod m*),
and so N\
| \\ 14
/, W =T (m{}d %) (D)

L)

From fé;\lt follows again that
.\\ I — )Y =0 (mod ?‘z)

X=X, V= (mod 2),

o }ecause

\/

but ¥ and A/d are relatively prime, and consequently

I".E r (mod 2) (E)
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Let A be the goed. of

m¥ A
‘-&“ and E:
so that
m” A
? = A,ﬁ., & = An A
A\
Then from ihwe congruences () and (E} we conclude §\ “
« \/
I = 1' + Auvp, x'\’”’s'

with p an mteger, and on subsfituting this exg\s‘\s@m into the
eongruen ey
V2 = g (mod A u?){o\ )
we find RS
2Fp = (} (mod m’
But m and @, and & fortiori Ijxa:pd A, are relatively prime
numbers; moreover, A i odd\ X G,pgggpgggznuhrblary orgin
239 (mod A}
and \

4 ¢ } .
\\I‘\’ =T (mod )\%);
and again, beéaﬁse of (€,
r ' ' d Am?
i\vX—I‘I, X' =TY (mod 5}
wheq@
N Mk
XY — XY =0, XX —a¥¥ =0{mod 5
xy’ — a'y = S = 0 (mod amt),
2% — ayy’ = 8\ = 0 (mod amb)

or
bu=0, o =0 (modm).
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Since ¢, u are relatively prime numbers, this iplies
8 = 0 (mod m¥);

that is, § is divisible by m*. Having thus proved tiat 6 = mf,
from the equation N\
e = 52@2 _ auz)
we conclude
m¥F = 1t — qul, O
Thus if ¢ is a quadratic residue of an odd muﬁad m, rela-
tively prime to @, then there exists a positifd/power of m,
say m", representable in the form \/
_ mh = 12 — au?
with relatively prime integers £ andw> This is an important
theorem ordinarily derived from{the difficult theory of the
composition of quadratic form&s
In addition we canpupieilisaf drgmtp = ) (mod 4), »
prime and m* is the lowédh power of m representable in the
form 4
Q
"\ mt = {2 — qu?;
. }t\ . .
then the expouent k of this power is odd.
We shall prove that the supposition h = 2k is impossible.
In fact, font’= 2k we have
5:\...
N\ (mF +H(m* — §) = —au’.
If’@?: even, the factors in the left-band side are relatively
"&p’rime, and then with a proper choice of sign we can 2eb
”‘\s.t mk¢t=€0-2’ mkit= "-EGTQ, e = :,:]_;
whence
2m* = e{o? — a7?) = ( (mod 4),
which is impossible. If £ is odd, then
mF 41 mb — 1
2 2




Pir)BLEMS WITH QUADRATIC FORMS 375
are relatively prime, and we can set

E T s &
i i o m* £ 3
2+--- = €0’ —— = —ear®; e= 11,

whence

mF = ele? — ar?). QO
Suppose af first ¢ = 1; in this ease a smaller power of m than-)
m* would be representable in the form {2 — qu? with rela,pi‘v ¥y
prime ¢ and v, which is impossible by hypothesis. The\case
¢ = —1 can present itself only if @ is a positive primge p = 1
(mod 4). Hut then, as we shall see in theMpsxt section,

integers f and g exist satisfving the equation\,
N
F—agt = —1,.\"

But from thiz equation and \

it follows guin a’f ww \-?Tébl -aulibrary org.in
= (fo 7”6197)2 — a{fr — go}?,
”‘\\ .
which is insposaible :
10. Ruminer’s Pr}of of the Reciprocity Law. Let A be a
positive numner ’cmt not a square, and let T, U be the smallest

positive inte ‘{EIS satlsfymg the equation
O 1% — Au? =
Q -
A4 'E«\l (mod 4), then U is necessarily even; for if U is odd,
o>
\”\ T2 = AU? + 1 = 2 (mod 4),

which is impossible. If U is even, T is odd, and the equation
can be replaced by

T4l —1_(E)2.
2 2 .‘4-2_
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The factors in the left-hand side are relalively prime; conse-
quently if o is the g.c.d. of

r+1 and A

2

and . O\
A = af, r+1_ ma, o e
2 \/
then (T — 1)f2 must be divisible by g, and we c‘uN ’t
_ \\o
Tl @O

After substitution and cancellation of a{ch}both sides, we get
and, sinee m and n e, Qod%t ‘éﬁi e‘latlve erme numbers

Tary. or

TQ_Fr "‘N’“ g; 2fg;
go that o\

AN
z +§ OK]\‘;: OEQ'Q, T ; 1 = BfZJ

and by substibtitiﬁn

A&/

OO ag® — Bf* = 1.
Let A“‘at first be a prime p = 1 (mod 4). There arc only
two, sibilities in this case: e =1, § = p; and o =P,

&%‘.1. In the first case

~\J
\”\; : g —pff =1,
' 4
but this is impossible because f < I7 and T, U are the smallest
positive integers satisfying the equation

2 — pu® =1,
go that necessarily &« = p, f§ = 1, or

=gt = -1
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In other wo:sds, the equation
x* — py? = —1

is solvable in integers if p is a prime of the form 4k -+ 1. We
made use o Lhis fact at the end of the preceding scetion.

Now let 4 = pp' where p and p' are primes both
{mod 4).  1n this case we have four possibilities: N

N\

=\3
N

N

o = 1} -8 - pp! ,,"N}‘.
a=7pp, B=1 R4
o =P, B=p" 0

a=p, B=p N\
o \.a
72\

The firsi 12 Impossible because in this.casde

g* ~ prfA =
and f < ', whereas T, U a;‘pr,.ﬁ}'&, ana%gggthjjntegers satisfying

. Tary. i
the equation = Tary-org.in

e pput = 1.

For the sceond possi\b}kﬁy
NG o -f=1

and this is imi’tggéi}Jle because —1 is & quadratic nome_Sifi}l? of
primes =/3\fnod 4). So now there are only two possibilities:
\QO

O
' &\\”fﬂg"‘ —p'ft=1 and pgt— ot =1
'.I\J\lk“}fﬁrst equation requires pRp'; similarly the second requires
“\=pRp or pNp'. Since these are mutually exclusive requite-
N\ ments, we conclude that in case pRp’ two integers f, g exist
satisfying the equation
pg? — pff =L
Kummer’s proof of the reciprocity law d_epends partly on
this result and partly on the last theorem In Sec. 8. Let p
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and ¢ be two different primes. The positive o negafive
number

g—1
(=1) *
N
is always = 1 (mod 4). Suppose now that A
(—1) * ¢Bp. \ >

By the theorem referred to, the exponent of,@i;e smallest
power of p representable in the form N

Ny

— (- I)Tquz, :\.}
.\‘

is odd, so thas N

2 . (_1)%@,&2‘; pIFL,
This equatlon 1mphes,t,lwdﬂagﬁmmi5, org.in
RN P (mod );
that 18, p¥*p and ,\}ik}wise p are quadratic residues of ¢

g—=1 1
Thus if (—1) 2> MqRp, then pRg.
It rema,ms tg ‘prove the second part of the reciprocity law:

i (- 1)\‘§N p, then pN¢. In this proof we shall distinguish
the f;%kowmg four cases:
W\
N\ (a) ¢4 = p=1(mod 4);
=1

v By g =1, p =3 (mod 4);
() =3, p=1(mod4);
(d) ¢ = p =3 (mod 4).

In (a) the hypothesis is ¢Np, and we must show that thep
pRyq is impossible. Bince p =1 (mod 4)

»—1

P = (_1)_2“?9:
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and s0 pRy¢ i+ cquivalent to
p-1
(=1) * pRy.
But then gy, which is contrary to hypothesis.

In (b} the bypothesis is ¢Np, and we must show that then
pRg I8 dropossible. Since ¢ = 1 (mod 4), the statements, -

N
p-l : A\ N
pHg snd (— 1} % pRg are equivalent. In case \ O
el ...(""3
('_'1) ? qu} M'\'\"

we have ¢lip.contrary to hypothesis.
In (¢) the hypothesis is —~gNp; since p\ T (mod 4), this

implies q¥p, and we must show tha‘{ ‘PRq¢ iz tmpossible.
-1
Again, pRy and (- 1) 2 pRy are eqmvalent statements; but if

( — ll;ffzf%w;d brauljbrary, or g in

then gRp, which is contrary to our supposition.
Case (d) requires a(cﬁfferent treatment. Since p =g =3
{mod 4) hy hypotb@qs —qN p or qRp; then two integers f, ¢
exist such that A\
7 wr-pP=
and this im{;k’is’s
O pf? = —1 (mod g),

“henc‘o we conclude that pNg. Thus both parts of the

I‘ecu)romtv law are proved.
"\, The Four Squares Theorem. In thp ughtoenth annota~

\tmn to Diophantus, Fermat says,

) £
“We found a beautiful snd mast general praposition; namelyt;]::e
Every integer is cither a triangular pumber or somposed Oft;woeo; four
triangular ninmhers; either a square or composed of two, ﬁre entago-
fquares; efither pentagonal or composed of two, three, four or Ve P
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nal numbers; and in the same way a general and marveious propogition
can Be announced for hexagonal, heptagonal and any sort of pelygonal
numbers. But it is not possible to give the proof of it, derived from
many and most recondite mysteries of numbers, here,”

Termat never revealed anything about the way e proved
this remarkable property of numbers. The sccond otk
of the theorem, namely that every integer is a sum of ;10{ wioTe
than four squares, was proved for the first fime bjyj .,;.xgl ange
in 1770, and his proof was later considerably almm iked by
Buler. The first part is equivalent to the sth.temr\nt that
numbers of the form 8n + 3 are the sums of thiee (neecasarily
odd) squares; the proof of this and the ggu{&na.l solution of the
problem eonecerning the repres(‘ntation of integers by the sums
of three squares were given by Gausgs,\Later Cauchy zhowed
that other parts of the Fermat ;heorc-m can bo derivad in a
comparatively elementary buti“rather long way trom the
frst, WWW braulﬂarary org.in

We shall end this chapter by proving Fermat's st=iement
for squares, reserving, the case of triangular numbers for the
last chapter of the hook That every integer is the sum of
four squares (som\of which may be 0} has been proved in a
great many ways. The proof by L. E. Dickson, wiich we
shall adoptChere, is perhaps the simplest. But befuse we
procecd’wf@:}bfle proof, an important lemma due to Iagrange
must Berestablished.

I\p is an odd prime and A, B are two integers nendivisible
by p, then the eongruence

N/ 22 + Ay + B = 0 (mod p»)
can be satisfied by integers x and y. Suppose first = = [, and
eonsider the numbers
—Ay* - B
fory =0,1,2 ..., (p~—1)/2. These (p + 1}/2 numbpers
are incongruent mod p and, since the number of quadratic
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nonresidues modd p is (p — 1)/2, there must be among them
at least one qu-tratic residue.  Let it be

“‘Ayﬁ - B?
and 2y some goiution of the congruence
af = —Ayf — B (mod pj;

then AN
#f + Adyi + B = 0 (mod p). O
Notice that x. and yp cannot both be divisible by p’;f’giince
B is supposed vondivisible by p. To satisfy the cgngmence
2%+ Ay? 4 B = 0 (mod p°),
we take A\
£ = xo -+ pi, = yq.{?-‘\‘
and obtain for ¢ and % the congruence\
4 e B
2wet - 2Ayou + _x_“_:tﬁug_j-_ = 0 (mod p).
v.{:}‘If«\;\r\-.r\a\.v,c{brauljbrar_y_C,.J. in
At least one of the numberd"2%, and 24y i3 not di‘.qSl le by
- p, for exampis 2z, Then“z can be taken. arbitrarily, and £
will be deternvined by.\ﬁﬁe preceding congruence, so that
_ 23 oo 4 pt, Y = Yoof PU
will satisfy thy edngruence
D7+ Ay + B =0 (mod p?).
In the El%n‘e way we can show that the congruence
W A £ B0 d )
“tanbe satisfied by integers z, yforn =3, 45 - - - - From
i fact we conelude in the usual way that for any odd integer

m prime to AB the congruence
2% + Ayt + B = 0 (mod m)
is possible,
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Let 4 = B =1 and m any odd integer; also let «, 8 be
any two numbers such that

o+ B2+ 1= 0 (mod m)
or A
o + 82 4+ 1 = mm', .
)
Suppose that the equation . \“}\ )

wo= gt p oyt e N (4)
' ] €%
can be gatisfied by four integers &/, o/, &, ¢/ %Q“:ﬂmt

o= + 8, ¥ =8 — Mod 'y, (B)
Then A

?}'-—ﬁz +oi’

N
="y et S

m 3 m
z = mz + az - 8, &y—mt’—{—ﬁz—r
WWW dbmu:libl ary.org.in
will satisfy the equatlon N\
xz + y.z + 22 + tz’ (C)
0\,
and the two cong}uences
x\?v‘ wz 8t, ¥ = Bz — of {mod m). (D)

By Vi"(gﬁé'of the congrucnees (H) we can set
{\x—mu—i—az -+ 8t ¥ = m'v - g2’ — af,
¢ é,nd on substituting in (A) and dividing through by m’ we get
Q m'(u? 4+ %) + 2ules’ + 8 - 20(82" — ')

_I_ 2+£’ _E_‘—j(z’Q—,—f;E):l

or

m'(u? 4+ %) 4 22/ (0w + Bv) + 20 (Bu — o) + m(z'2 ¢ = 1.
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Muitiply both members by m, complete the square, and
replace mamn’ by 1 4 o 4 B2; then '

m = (mz’ + au + B)? + (mt’ 4 Bu ~ av)? 4 u? - oL,

That is, (C) i3 satisfied by A
2= 1, t =, z = mz + au + Py, A
&
o = mt + Bu — av e\
or N/

;zN:'
' — ot — B tvy’—-ﬁz’-i'aﬁ': !
T m L4

AN
x = mg -+ az + B, y = mt + ﬁz\.-z- od,

and the congrucnces (D) also hold. o\
After this preliminary observatmn.\w‘e proceed with the
proef, Take an odd integer m a.nd find two numbers a, §

1

satisfying the congruence D

a? 4 gt + ~L ==\rﬂuf(\1n@ﬂr’ﬁlahbl ary.org.in

so that
otk ,32 + 1= mme.
We can supnose a»t\{i’rsf outset that
O el =dm, (8l 23
Then 'C\,/‘
7 \ ¥ 1 1 1
g o My = §m + m

\”,
and ‘r?b < maslongasm > 1.
Mnd €1 50 that

\" 0 =a—dm, H= B — e
= o, f1 = 8 (mod M),

1f m, > 1, determine integers

are both numerically £ ym:. Sincear
we shall have

a§+ﬁ§+1.=_0(modm1)
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orT

OC%_ + Bg +1 = MiMs,

and ms < my. I me > 1, determine integers 3, and ¢; 50 that

oy = ay — Sgma, B = B — extia \
N
- 'f v
are numerically both < $m.. Then ."\\"}
O
a) + BE 4+ 1 = mamas ,n}‘

and ms < Ma.
Proceeding in the same way, we have a d?(xm%nm series of
integers

m > Wy > MW > T ﬂ%?%"maﬁl

which must stop, and this can hap.pérﬁ only if we come to a
term = 1. Let therefore m.y =1, While the preceding terms

are all greater than 1. Since (&%
W dbrauhbl ary.org.in

: af + 6& + 1 = 9,
the equation A\

miS sy A
is satisfied by \\

n,\% Yo = Br  En=1, La=0
and s0 tiak&,a{t
J‘.\}" = aazn + Buls, Yn = BaZn — caba (Iod 7

8N
Q“’zn = fn_1%n + ﬁn—ltﬂ; n = B'n—lzﬂ - an—-ltn (mod T'ﬂm),
"4

since

Un = 1, Ba = Ba (ID.Od mﬂ)'
But then, by the remark made above, the equation

Mooy = @y + yho + @ + B
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is satisﬁe_d by

gt
in -k
.
a1
g0 that
P
Yot
or
Tl
fino1

But then again
Zp-2
iy
.3

Lpz
Yn—2

Lo = Ry &g — »Gﬂ—-].tﬂ

TR R
in

_ys_'} - ﬁﬂ—lzﬂ + an—-ltn’

Hin

= Mu_1%n + LS Y + B‘N-—ltn—-l}

it

it

’.mm—-lin + .Bn——lzn—-l - an—-!.tnv--lr

X151 + ﬁﬂ-—ltﬂ—
ﬁn-lzﬂml - aﬂ-—ltﬂ—l

Oy2Zy 1 + ,Bﬂ--‘.itﬂ-—h (mo({;ﬂé ]f)
h-1)-

Bu—gZn1 — Gp_gbn_1 Ve \\d

¢t

RS

J
AN
?‘_ﬂ:—l "" an—ﬁzn_—_hl,"qﬁﬁatﬂ‘"l

LR Y
7}3,‘&‘1‘: $
>

E
3 —
3 Mn—1

Mo+ Cn2Znz + Brtbn—g
mu‘fg—l + ﬁﬂ-—?zn—i - a’,,_.gt,;_g

will satisfy the e;m:ﬁ}(m

., ) o
M o= 3,2._2 ~+ y?;ms -+ 33;—2 + s

" o
and the gahigruences
O

Q

¥

™y
Yn—2

AN

) 2

= gn_stn-2 + .813—3&"2’ (mod MWaa2):
= Br-so-s = Gnsbnt

ers T, g, 2, ¢ which satisly the equation

m = ? 4y + 2+ 8

and the congruences

T = az + B,

g = fz — af (mod m).

¥ (mod mas) :

O

%
1
N

\
»

3

€N

Yra B ﬂ-&%‘f_’hﬂbﬁﬂt&rary_ org.in

385

X ¢
N

\";  the same way wo proceed further until we find four inte-
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The algorithm whereby x, y, 2, ¢ are finally found consists in
the use of the recurrence relations

T — o2 — Bl Y — Bz ol
zi-—l - — - ————— tt'--]. = e e — e
my 7,
Ty = Mz + oiaZier + Bicidio, ':\“\’
Y1 = Myl + Binazin — by o\
N/
fori =n,n~—1,...,2 1, starting with :\f"
Tn = iy, Yn = Bn, Zn = 1) r’

\ m\
It is thus proved that every odd integer i3va sum of four

squares. For even integers the proof is Q@;ed on the simple
remark that an equation \ &

m—z2+y2+zﬂ+t2

= (zr + y)? \j'w(&brmﬁ}h‘ r)gzol-g Qz + (2 0%

Example. Let us apply thls.,method to m =331 =313 TItis
found easily that <\
o ﬁs}a, = 3 (mod 27)
watisfy the congruena%

implies

t 48 4 1 =0 (mod 27).
Also 7 \ W 4

:~}' a =5 g = 0 {mod 13)
satisfy the/Cahgruence

"\Q
\\« o + 4 +1 =0 (mod 13).
Hent;} the numbers «, 8, satisfying simultaneously the congruences
A
p \\.' ) a =1 (mod 27), « = 5 {mod 13},
\/ 8=5(med27), §=0 (modl3),

"will satisfy the congruence

ot + gt 41 = 0 (mod 351).
We find

=100, = —130
and

109 + 1302 + 1 = 351 - 82; ;= 82.
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Again
ay =100 — §2.1 =27, p o= — 130 +82-2 = 3¢
M7 B4 41 = 8298, my = 23
and
ae =37 —23-1 =4, Ba=34-23-1=11
42 4112 + 1 = 23 . 6; ms = .
Furthermore
w4 —6-1= =2  fp=11 —6.3 = =] O\’
2+12+1=6-1, mi=L o\ 7
« \J
Binee my = 1, ti.: {irst series of operations ends here. Wa &
The second =i beging by taking: \} '
&
s =2 W = —1, g =1, IAYS )
and determininy \\
, w
~2-4-1—-11-0 _ _{1;{}
30
Lo Tl-1 14408
R 6 o

vy =931 — 4 - 1,s3::]_1‘-’-\‘\2‘-'\f=ﬁ3]h1%ut[brﬂl‘ i
N ¥.org.in

po= 2300 - 1RGP 4-2 = 3 e
after which wo ‘nd ,,(

-3 _;a:m 14842 -4
5 o= —C\Q r“ '
O3 +34 1-27-2

h..ad———“_“_— =

*r\‘, 23
(e = —82-1 4274 - 341 =8,
ANSp= 822 p3d-a 270 =L

- and ﬁn@\&zs./

R [Iy:.1a JY
O ) 82
O [ LTl4130-4 10001

82
2~351.4—109-7 — 1305 = ~&
y~ —351.1 4130 -7 — 109-5 = 14

With thege numbers we have

(=92 -+ (1a)2 +(__7)2+52==81+196-|-49+2a=3al
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CHAPTER. XII

N

2 N

SOME DIOPHANTINE PROBLEMS ()

1. Object of This Chapter. In a gencral SensgR, D‘iophan-
tine problem is any problem requiring the solubibnof an inde-
terminate equation or system of equations il integral values
of the unknowns. A Diophantine probl¢m” 1s eonsidered as
solved if a method is available to decidé whether the problem
is possible or not and, in case of itg*pessibility, to cxhibit all
integers satisfying the requiremepts et forth in the problem.
The partial solution of g Digphantine problem fias only a
very limited interest." “THERRREBRET8HYy fow Diophantine
problems of a general type 1n which the complete wolution is
known., Thus, for ips\ﬁénce, infallible methods are available
for solving indete@nﬁt—e equations of the second degree In
two unknowns

:‘?‘:’G’”Jr bay ey +de ey +F =0

with iqt«:’gr%i coeflicients. On the other hand, the general
Dionl%uﬁne equation of the type

*

N "\ f(x:y) = ™,

iwﬁerc f(z,y) is a homogeneous polynomial of degrec n £ 3,
is known to have, except in cases of degcneracy, only a
limited number of solutions, but ne sure method is available
to detect all of them. Again, if f(x,y) is a homogencous
polynomial of the fourth degree, there are no sure methods
for the solution of the equation

fz,y) =2
388
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with three unknowns w, y, ¢ except in a few particular eases.
Yet many problems set even before the rise of scientific
number theory led to just such equations. One can easily
understand that Diophantine problems offer an almost
unlimited fiild for research by reason of their variety and that
the suceessi)  overcoming of difficulties connected with
their solution will depend on the further progress of numbet )
theory. 1la this chapter we shall consider a few special Dig- -
" phantine problems partly because of their historical an;erest;
and partly hecause they offer a good application of the\princi-
ples explained in the precedmg chapters. ~~\
2. Equations zf + ay® = z*. A complete soltition of the
Pythagoresn equation Vs \'

7 .

22 oyt =2 N

has alre: cady been given in the second chapter of this book.
Here we <hall consider the soiutmtn ofdequatwm of the type
) v dbrauliby ar
x? + ay = z* VERRIN (4)

In integeis x, ¥, 2 of whiel\s' and y ave rclatively prime. The
meants at our disposaly oot suffice to do this for every value
of @, and we shall cor}ﬁne ourselves to some partieular values of
¢ only. "

A solution of ‘(A) in relatively prime integers =, ¥ belongs
to some root/bf the congruence

.(§"’ Nt = —a {mod 27
50 thaty
\ T — Ny =1{} (I’DOd Z”)

wy the Fundamental Lomma in Sec. 2, Chap. XI, two integers
t, u and a multiplier A ean be found in such a manner as to have

24yt =%y i~ Nu=0(modz); A= Vilaf

and the g.c.d. of { and w will divide ) and 2.
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Consider now integers P, @, obtained by eguating the
rational parts and the coefficients of v/ —a, whicl: i+ supposed
to be either imaginary or an irrational number, in the equation

P—Qv—a=(t—uv—a
 To get P and @ we expand the right-hand side and (hmmafe

powers of 4/ —a higher than the first by means oi ihie, equahty

(v —a)® = —a. Suppose now that instead of '\,a.) 7 we take -
N and eliminate powers of N higher than th{ KQ.'\:#.-" by means
of the congruence v

Nt = —a (mod z”)”\\;

Then it is clear that \ v
{t — uN)’f::"
will be congruent to P — QN m{)’xi‘z”, go that
P - QNS %ibl ol aréml-)g‘(jr%od z").
From this congruence'“@nbmed with

A yN = 0 (mod z7)
N
it follows that a\

Pg, kg&Qy =0, Py— Qr=0 (modz"),
- and we cafl\s'et )
.\" Pz 4 oy = pz», Py — Qz = gz~
Vifl\thp, o cerfain iniegers. Now

‘\w\;‘,/ _:t:—i-y\/_a P$+aQy+\/—a(Py ‘_&.?-
P+@v=a Pt e ‘

but
. P2 + sz — lﬂzﬂ’

and 50

z+y\v —a = *(p + o/ —a)(P + @/ —a),
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whenece
2 Pi‘ 2
e = O T

or

_ (p* + ag?)nzn ~

'_h_“)[m \

. £ '\t\'
Corsequently the integers p, ¢ satisfy the equation o\
2 + ag? = \* ("}S

Thus far the procedure has been quite generadx\We turn
now to such values of a for which we can be sufetiat b = £ 1.
Then to auy solution of the equation N

W

x*-{-ay?:z“ \;

in which 2 and y are relatively phme, correspond a pair of
integers ¢, w and a pair of m’oa&@xb dbrdufiiRse §t§§g Pg the
aquation N\ '

p? -Hoe? = (1)
A\

r w:&\i"fp /TR Ta B

It is clear thag 3” % " will be relatively prime. Conversely 2,
¥, a8 defined. Qy. (B) for arbitrary relatively prime f, % consti-
fute o -,olumon of the equation
SO z* ey’ =2

in which
Q 4z = t* + aul

But will %, ¥ be relatively prime? T hi{ls will be the' i?a-‘i!e i{:
and ou are relatively prime and of different parity.
Prove this, suppose that P and @ as defined by

P+ Qv—a= (t+u\/*ﬂ)”

80 that
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are divisible by a prime p necessarily odd. Then

2 4+ aut = 0 (mod p)
and "
t = ru (mod p) O

for some root of the congruence

r! = —g (mod p).

'
7,
-

But as 72\
P4 Qr = (t + ru)* (mod p)\"~
we shall have \4
t = —ru (med .p,z\;
and \s
2t =0, ¢=0Gnod p),

and consequently p divides gu?*which is impossible since ¢

and au are relatively M%M$ga@§ﬂ‘é¥ &h@ final conclusions we

turn now to particular cases.
3. Particular Cases( Case 1. a = 1. The congruence

":} = —1 (mod z*
\ (mod ) |
being impossible if z is even and » Z 2, # and  in the equation
:~:\:/: xz ,+_ yZ = zH
oy . e w
must be*of a different parity. Also A = 1 if z is positive, as
wegsiiall suppose, and '
N
AN &+t =z

\/ which shows that ¢ and u are two relatively prime integers of
different parity. Consequently all solutions of the equation

x? - y2 = 2%,
in relatively prime z and y, are obtained from

' z + iy = et + 7w)*,
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where ¢ = +/—1, e= *1, 7 and ¢ snd » are relativély
prime integers of different parity. Noticing that —1 = 72, we
have for » = 2 in particular

4ty = (p+igp* or x4y =ilp—ig?

go either A .

T =pt— ¢ y = 2pg
or ,:s..

~

x = 2pqg, y=9"~q¢

with relatively prime p, ¢ of differcnt pari’gy:\.‘This was
obtaincd in Chap. II by quite an clementary method.
Bince 7 = (—19)%, —1 = (—1)%, the resultforn = 3 is
o iy = (0 +4S
That is, all solutions of the equatigri”:
x¥ *[:}'g?:‘i?\wﬁfb,dbraulibl'ary.org_in
with relatively prime 2, y.andl positive z are given by
Q
v - Bpg, Yy =B — ¢ =P L
with p, ¢ relat-ivgaiy})rime and of different parity.
Case 2. a w2 The congruence

AW
N £ = —2 (mod 2%
\M
being .’%zip'ossible if 238 even and A =1, { and 2u must be
relagiyely prime and of different parity. Al the solutions of
. thti‘équa.tion
Y x? + 2yt = 2

in relatively prime z, y and positive z are given by
- 2
phyv/ 2= o/ e A

with p, 2¢ relatively prime and of different parity.
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Case 3. a = 3. The congruence
£ = —3 (mod z7)

is impossible for an even z il » = 3; also it iv impossible if
z is divisible by 3.  With an odd z we have neceesurily A &= ‘i,\
and so all the solutions of the equation O\

N\
g 2 :"\\ ”
22+ 3yt =

in relatively prime z, ¥ and positive odd z are gv?eu by

z+yv -8 =+ + ¢/ -3), ?win + 3¢,

with p and 3¢ relatively prime and ofs Q}ﬁferent parity. The
double sign + is not ncecssary if n IS\Qdd

In case n = 2, though z, y aré\relatively prime, z might
be even. In this case necessatily X = 2and

—t‘& .‘, . P 2
v+ yy/—5 = Lo g, LA
while .M<\
A P30t =4,

sothat p = +3, }— O,orp= 1,06 = £1. Incuscp = %2,
e=10,1 and:u ‘must be odd. In case p= *1,¢ = £, we
notice th it >

\;:y mli\/—s_ -1 F +/—3¥°
2 N 2
a:nd

‘/_3(t+u\/ —3): = (t+ 3u + (u v/ — 3)

2
= 1o+ o/
if
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At the same time -
P+ 3¢® =4 - Bl
So that, finally, all selutions of the equation
2? + 3y = 22
with relatively prime z, ¥ and positive 2, are represented b,X \

two sets of formulas ¢y
\

g+yv—3=1(p+g¢v/—8), z=p+ ,3g§“"'
with p, 37 relatively prime and of different paﬁty,\aﬁd ’

N aye Y 34t
T e JTN I A VSN i oK. &
p AP 2
with relutively prime odd p and 3g. ‘Tl}}s\i'esult can be veri-
fied by cntirely elementary consideratiens.
Cast 4. a = —2. The congufence
g2 = 2oy Syravlibrary org in

is impossible for z evend With an odd 2, we have A = 1;
conscouently alt solu;-icn\ﬂ of the equation

22— 2y2 - gn

in relatively pr{fﬁé'x, y are given by
G yVE = o oV/DE+ uV
where Q,\x“;im solutions of the equation

e 2 __ 9.2 —
A p 2 1

\;}\d't and 2u are relatively prime. X ‘
Case 5. « = —3. Again # must be odd and pnme 10 3;

X can be either 1 or —1. If » is odd, A must be 1, but Whel.l ¢
iseven, Aeanbelor —1. Inall cases solutions of the equation

22— 3y =2
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in relatively prime z, y are given by

x4+ yv3 = (p + a3} + u/3),

where p, o are solutions of the equation

N
pt— 3t =1
O\
and ¢ and 3u are relatively prime numbers of differeut ﬁnnty
Case 6. 4 = —5. In this case z must be pnmp tu "5 but

may be even if » = 2. Considering only odd/x 119: of 2,
we can suppose A = 1. Then all solutions of, »ﬂu aruation

— byt = z" \
~

in relatively prime x, ¥ of different pari{y‘“are givrn by
z+yvVh = (p + af)@ + u\/5)",
where p, o are solutlons 0 b&%ﬁﬁﬁ%%?%{lg i

pg‘ﬂ “het =1

and ¢ and Bu are relat,w:e\y prime numhbers of different parity.
In Seec. 5, Chap\m we have scen that

p +°:‘/:5. = +(9 +4~\/5)" = +{(2 + \/5}

' N
for r = Oyssd, +2, .. .. Since
”\.‘~ _
A @ + V)t + uv/B)

R\
cam be reduced to the form p + ¢+/5, all the solutions of the
22 — Byt = 22
in relatively prime =z, ¥ of different parity will be given by

z+yvE =+ + V)3
where again p and 5q are relatively prime and of different
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parity. Thiz result follows alse from entirely elementary
gonsideratior.s.

4. Some Equations of the Type z2 4 ¢ = 4% Equations of
this type are very important, but so far a general and sure
method for their solution is lacking. We shall consider -
here only a {ew particular cases. Jet at first ¢ = 4. If £is "\
odd, ther {an the equation : : Oy

2+ 4 =gy S
it follows thnt A O
with p, ¢ ielatively prime and of different parity,) Equating
the real and imaginary parts, we have RS
x=p* - 3pg%,  3pR L2
and the last cquation requires that € ¥ +1 or g = £2. If
g = +1, we must have ™

7 o

3p? — %::-g%brautibrary,org,m
which cannot be satisfied by ateven p. Forg = +2 we must

have O
¢ '\3;;2 — 4 = j:l,r

and here only the'negative zign may hold, gorrf:spond.ing to
which p = +1,{g)= —2, so that the only solutions with an

o ., O
dd = are P\

\;"\" z= %11, y = b
SUPI’?@‘}@ now that = = 2t is even; then
:..\‘:':' 2 + 1 = T
"i\} 4

AN .

t 1Y, (LY e
("2)+(2) ¢
%}, and L%—l

Bince
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are relatively prime, we must have

t+1—|——z— {r + s0)?
: N
with r, s relatively prime and of different parity. Hence,\Q
oA\
t4 1 -1 ., o
_—g" =r¥— Srs"‘,. Ty = 3ris — i;’:/
and O

4

3 4 8 — Jrslr + 8) = L\\\V

or
(r 4 s)(r? — 4rs + 3) \%\l
It follows that necessarily N ,‘,\V
r+s8= +1, 4?8-{—32——#-1
and the only solutlmwmﬂiﬁbmﬁpng imtegors are
r=1, ,{— r=0, §=1;

correspondingly § ﬁ\}\and t = —1, so that the oply solutions
with an even x\a

t \M) r = +2 W= 2.
Next v&Qdonmder the equation

AV
\%»/ 2t 4+ 2 = o,
”Egém which it follows necessarily that
O &+ V=2 =+ V=2
whence
z = p* — bpg®
and
3p*¢ — 2¢° = 1,
so that

g= +1; 8p*—2= %L
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Clearly only Ui:e positive sign can be accepted, and then

p = +1, g =1, r = 15
Thus
z = 18, ¥y =3

are the only sclutions of the equation R
AN
Z? 2 = gyt . :,\ .
Speaking of these particular results, Fermat wnt(w m a
letter to Digby on August 15, 1657, \ )
“Je Ini (T'remiele) avais éerit qu'il n'y & quun seul ndndhee quarrs en
entiers qui, juint wu bingire, fasse un cube, et que lo dif\Guarré est 25,
auquel si vous ajoutes 2, il se fait 27, qui est cubes’ \h”s, peine 4 erofre
cette proposizion négative et la trouve trop ha?rdle et trop générale.
Mais pour augmenter son étonnement, je dis que, f on cherche un quarrs
qui, afouts i —i fasse un cube, iln'en trouvera , jamats que deux en nombres
cotiers, savoir 4 et 121, Car 4 ajouté 5 4“f.mt. 3 gui est cube, et 12:5
sjouté & 4 fait 125 qui cst aussi cube. dﬁ”lﬁtf’ﬁ foute I'infinit
J Lagm‘g PropHEts.”

des nombres n’en saurait fonrnir g cm:méme qul 1 la m
As a third example wo t-a\ke the equation
\'\‘mg}_ 9 = 8,

the elementary soliibion of which succeeds by means of a
simple device due\hé “A. Brauer, When we substitute

\‘ Yy =2 1

NG,

into the ¢Guution, it becomes

\ 28 —32 32 +1=
O\ (z 4+ 1)3 = 22 + 627,

where  and 2 clearly are relatively prime. By the method of

Bec. 2, we conclude that

¢+ o/ 6 = (r + sV —6)%
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whenece :
z = 33(rt — 2s%
and
z+1=r*+6s% I\
On substituting the expression for z, we get Ko\
r2(1 — 35) = 1 — Bs2 — 643, O
whence N
1 — 6s> — 6% 8 8 i~
2 7 T = 2 — P L % SR
" T35 -~ 2T YegEs -0
1
2 2 — s
9r 1842 {245 + 8 "1§,~_ 7
and so necessarily 2\

3s — L =ChY.

But only for the negative §ig;";ikd0 we get an integral value
s = 0 to which r ﬂﬂ-dﬂg@ﬁﬁ@w&dxs,orgﬂance z=0,y=—1,
and z = +1, so that thé-enly solutions of the equation

{”“\'\ 2 — 2 = y'a‘
are '\s.l
;‘\x=i1, y= —L

Equati@né'éf the type
:1\»0
i"\'.“ 32 + c = y3
até _known to have only a limited number of solutions. De-
‘Klaiin&y devised a method which allows one to show either the
”\;dmpossibﬂity of such equations or to solve them completely
/ in a great many cases. For instance, Delaunay was able to
show that the only solutions of the equation
g — 17 =3
with positive x are
z= 3, 4
1

|9, 23, 282, 375, 378,661
y= -2 — 4

3
8, 43, 52, 5234
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Whether his method will always work is still an open question,
and the problem, despite its simple appearance, is a very
difficult one. .

6. Some Insoluble Diophantine Problems. On many
peeagiong Ferniat mentions in his correspondence insohible
Diophantine piroblems.  Sueh s, for instange, the problem
of finding two biquadrates (neither of which is 0) whose sum |,
isa square, or of finding a right-angle triangle in integers whoge' \
area is a square.  In fhig section we shall deal with these i',wo’
problems in order to tllustrate the method of proof by deseent
which Fermat wsserted to be his main tool of mveatlg‘aﬁ‘on

In the fivst nroblem 1t 1s required to show that the-équation

B =2 > W@
eannot be sarisfied by integers none of w‘hl}h i 0. This is
accomplished by showing that once we assume hypothetically
the existence of p051twe integors s Wy z satisfying equation
(4), another sclution in positive mﬁegedm@ulmba@ san, be
found, but with ¢; < 2. Then {¥om this solution a new Solu~
tion in positive integers xgllp, 22 is deduced with 2, < 2y
and the same process cafi\be carried oub indefinitely. But
this implies a ¢ ontradmh@\l ginee the series of pOSltIVE decreas-

ing numbers ,
N\ e > e > >

cannot, e oﬁmued indefinitely. Hence equat.ipn )
tannot be g B@sﬁed by posﬂ;we integers.
Thus wé\have the idea of the method of descent. As to the
detall‘*;\We observe in the first place that z and y can. be sup-
el to be relatively prime; then two relatively prime integers
of different parity exist such that

wept -, yr=3pg,  2=PHE

Now p cannot be even, since otherwise
z? = —1 (mod 4),



/
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which is impossible. 8o p is odd and ¢ is even; then

]
AN
(2) P 3

and, since p and ¢ are relatively prime and may e takfm 28
positive, oY
p =72 q = 2s% y = 2rs. :;;}\ N

Now the integers r, s must satisfy the equatigﬁ"’%

. 7 ~\"'
12 + 45t = -r4, \'..‘\

\¥;

from which it follows that O
O
=p, = 4-"«\‘+ o

with two relatively prime mtegers‘ p, o. The £t equation

implies that &N
W upd#L &]:Fbrapy g ip
and then the second becomes
O Fte-

This equatiomis 1\& the same form as (A) It ix satisfied by

positive mt.e%ers f, g, r, and it is easy to prove thai r <=2
In fact '
\m'

w \\ce'
Q Vs
RN r < —\/z

z =1t 45,

(Cand, a fortiori, » < 2. Trom this proof it follows that if the

equation (A) holds, then either z = 0 or y = 0, admitting
positive or 0 values for the unknowns.

Passing to the second problem, we may confine ourselves 10
primitive right triangles whose sides are expressed in integers.
Then the sides adjoining the right angle are

- 2pg



SOME DIOPHANTINE PROBLEMS 403

and the arca is
(p* — pg.

Since p, # are relatively prime and of different parity, the
factors p, g, p* — ¢? are relatively prime in pairs and the area
cannot be a square unless p, ¢ and p* — g* are squares. Thus
the problem reduces to one of finding integers x, y positiveya
relatively prime, and of different parity which satisfy ﬂg&;
equation

Pt <’«<B)

In this cquation z is neeessarily odd and .y ex(en\\ Wntmg
it in the form _
2t + f = Ii; ) ,"\\’;
= 2pq 2= et
Bince p wnd ¢ are relatively pl‘lmQ ’and of different parity, we

we conciude

bave, supposing p i odd, sWWW dbraulibrary, org.in
p =1, g= ’2 y = 2rs
and O
, \j-f\-{- 45t = x2,-
whenee again \\
3‘2“ o> — 0% § = po.

Furthermore M } é
¢ \”O p = f2’ g = g2
and D
~\’\\ fq. - 94 = ?"2
This, equatlon, of the same form as (B), is gatisfied by two
\g\sftlve relatively prime numbers f, ¢ of different parity.

ince
' s=fg y=2fg Fr> 2
it follows that

g<g<%

N
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and so the step of descent is accomplished. Equstion (B)
therefore has no solution in positive integers.

Consider now the same equation but suppose that x, ¥ are
of the same parity, necessarily odd if they are relatively pnme
‘Writing (B) in the form

— 2N
g+ ot = &
we have \J

=p*—¢q, e=2pg T =p +q,
X m\‘
whence )
— 2
pt— ot = (ay) N
Here p, q arc relatively prime and of d.iﬁérent parity. Such an
equation cannot hold unless ¢ = O = 1, but thenz =y =1
are the only positive and relatwely’ prime integers satisfying
equation (B).
6. Another Ferm#l’ Pfﬂﬁlieﬂfbr MFLERAMow In a pusition to
give complet{ solution of the cquations

\
— 2yt e and — 2yt = —!
in positive mtcg\'% These equations can be presented in
the form _ N
SWESA 2 — 1\
yt e © and  gpte—a2t={"— )
'® M 2 2
‘\w _ . . _
ands,\\.r; being odd, the first is satisfied only by ¢ = 1.y = 0,

whﬂo the only solution of the second is z = 1, ¥ = 1.
’”\' " Fermat asserted that the system of Dlophantme ecjuations
r =2y -1, ot =2 — 1
has only two solutions in positive integers:

=1 y=1 z=1
and

r =17, Yy =2 z = b.
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It is easy to prove this. The equation
ot =20 — 1

can be wiritten in the form

1‘2 . _12 &
5+ G5 - &
"\’

Since ;\”}

r+1 z-1 AT
2 and — ~ N\ 3

are relaiively prime numbers we must have, w}t@(ﬁhe proper
sign,

=+ ) e x 1.0
x_z_lz?_z_sz’ | +”.

~ ~

whenes {
1t 5t = 2rs = 11, :(:»‘-rﬂ-—32+2?‘8

N

SBuppose at first that the upp{;r E‘i\g)‘i’ Héfchylibtheporg.in

3""’*1\,?.2_.52_?;

or \\'
:'\s sz + ,yi! = ?.2
> I

Since 7 and s/ al;b)relatwely prime, s and ¥ are also relatively
prime and ;{ ;j’g 6dd, s even. Consequently

.&w r = p?of 8 = 2pc
thi@igg;being substituted into the equation

<>V Pt 2= (r—8) =,

gives
(o — )t = 26 = 1,

whence necessarily
p— 0= i]-) pr = 0;



406 ELEMENTARY NUMBER THEORY

that is, either p = 1, 6 =0, 0or p =0, ¢ = °{. In both
cages r = 1,5 =0, and x = 1.
Consider now the lower sign. Then

2 — g — Prg = —1, O
P .
and s must be odd, r even, Morecover, \\\
8
z+1 2 A\
—5 = 2rs = 99, A0
D
whence v
r=20% §=go? \'\'
and \}}
ot + dp2s? — 4p 7_.:\1{¢
or "/

. N
(0% + 207 = 12269

TR
By Sec. 2, Case 2, www .dbraulibrary org.in

1+ 200/F = Hp+ v/ D)
whence i ~\
P“’i\}'f’* = +1, = 3pg
and ;:‘, .
p =@ ¢ = b, at— 2t = 1.
L D>

By thg\xp}ecedjng discussion the equation
O @t — 2t =1
,»\i%:;}ﬁ-tisﬁcd only bya=1,b=0;then p=0,0=1, ¥=0,

= —1,z = 1, which is a trivial solution of the system. The
equation

at — 2% = —1

is satisfied only by a =1, b =1. Then p=1, ¢ = —1%,
p=1leo=1 and y = 2 2 =7, z =5 and Fermat's state-
ment ig proved,
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7. Fermat’s Last Theorem. The most famous of Fermat’s
theorerns, i complete form, is stated in the second chservation
to Diophantus as follows:

“A cube, buwever, cannot be split into two cubes or 8 biquadrate into
two biguadra tes, and in general no power beyond the second ean be split

into two siinilar powers, I have discovered a truly wonderful proof of,
this propositicu bt the margin is too small to contain it.” AN

7\
In modern notation the theorem asserts that for n >12 the

eqnation "
oy =2t N\

has no sohition in integers none of which is @\ While other
theorems of Fermat have been proved,,thid”one—the Last
Theorem f Fermat—remains unproy‘ea\ Tn all generality.
It is clear that it suffices to prove it €0r'n = 4 and for prime
odd values of n. The proof for as= 4 was given by Euler,
and it fo’i?pwg ixplnfzdjate]y f{@i}@d@@u&gggl‘?% rggsitive
Integers exist satisfying the e@uation

Byt =2 : _
) _
For n = 3 the impossihility of satisfying the equation
“ x3+y3=z3
AS
by integers msmp of which is 0 was proved alg.o hy Euler. ’ .For
fifth powetSthe Fermat theorem was proved in 1825 by Dirieh-
tet and J\%}'}ndre, and for seventh powers by Lamé in 1840, the
lattertproof heing simplified considerably by V. A. Lebesgue.
Sobn) afterwards Kummer applied his theory of eyelotoraic
“wgtnhers to Fermat’s theorem and eame to the startting
result that the theorem is true for all prime exponents such
that the numerators of the Bernoullian numbers

Bl, Bg, Bs, .o ,.B;:-S

2

Q"
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are not divisible by n. Among the primes below 100 only
37, 59, and 67 do not satisfy this condition. In jursuing his
deep investigations Kummer in 1857 published new eriteria
of a Tather complicated nature whereby the cuses n = 37,
59, 67 were absolved. Thus it was proved that Fermatls
theorem holds for all prime exponents below 160, O\

In recent times H. 8. Vandiver, by developing Kpmimer's
method, discovered new criteria assuring the unpo%lblhty
of Fermat’s equation, and was able to verify Eotual’s state-
ment for all prime exponents < 617. KummL # investiga-
fions are deep and are based on the theeryvof « particular
class of algebraic numbers depending gnjthe roois of unity.
We cannot possibly enter into this \«:Q’st and imporeant field,
and we shall develop the proof of e rmat g theortzm only for
n =23 The pI‘OOfb forn=25 and n = 7 are elemoentary but
too long to be given a place heére.

Let the three nuﬁb’(“‘fsdk}?f'@“ﬂbﬁé’{'ﬁ ihich is 0. satisfy the
equation

K 333 + ¢ =2~ (4)

We can suppose’that z, y are relatively prime; then 7, ¥, 2
will he rclatlvoly prime in pairs. Of these numbers two are
necessarily’ ddd, and we can supposc that z and y are odd.
For if, fordnstance,  and 2 are odd, we can write equ ation (4)
in the £orm

O @ + (=)t = (—y)"

:~$ﬁﬁp03ing, therefore, that = and y are odd, we sct

r=p+¢ Y=p 4
so that p, ¢ are of different parity and relatively prime. On
substitution, we get
2p(p* 1 3¢%) = 7%, B
whenee it is clear that p is different from 0. Now z may or
may not be divisible by 3. Let at first z be nondivisible by 3;
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put at all even:+ = s even. Since 2p and p® + 3¢* are rela-
tigely prime, we must have
p o= b 7t + 3¢ = B z = 2af.
Since p and ; ure relatively prime by Sec. 3, Case 3, the A

equation
p? + 3¢> = £° O
implies e
— « N/
p V=3 = 4 sV =3, N
whence K7,
. . \"
p - r{rt — 9s%), g = 3s(r® — 3*).\{“}
But . N
7 = 4ab .*.\J
and so N\

r(r 4 3s)(r — 38) = 4&3
Since r and 2+ are relatively pume “and of different parity,
the factors r, 4 8s, 7 — 38y are f‘él‘é‘t"ﬁéﬁﬂ'{irlnﬁrgﬁbdgﬂm;
consequently
r s = p? \\r ~3s =4 = Tz_’

whenee it follows thak
A I

b\
Cloarty nonemirhe numbers p, o, 7 55 0, and we shall show that
O
N/ < .
In fact &\ % Il <
\w’ 2=Wﬁf} 6=?12+332>16’

@hee it is clear that
< lel.

v 3. Then by virtue of
1] bOth Sldesf we

Il < {6

SUDI?OEe now that z is divi51ble b
(B), pis divisible by 3 and, after canceling 9 0
ve
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Herol§) )

Since the factors on the left are relatively prime, e must haVﬂ\

_ , \
p =360 @+ 3(%) = oz Eiafﬁ"”\»‘\t:w\“.

Again ~\ \,”}
P AN
T +EVTE = ¢+ sV =)D
whenece \Q\:\'
p=98(r3—s2)=.3b&\
or "(:

s{r? — 32)‘ Do,

But s, r + 8, r — s are pr1me.ih«pa1r~5 sinece 7, s aro relatively
prime and of dlﬂ'enggm}m;ggﬁhhoggfogigqgfssarlh

8

r+s=p% N r—s= —0%  s=
A
J

and Q\
(\) -‘9:i + = rd
O
None of t}m humbers p, o, 7 is 0. Moreover
7,

\{\w z= —3porB, B =12+ 35 > 48
and:\
AN
’\“ [rl <

P

< |z].

144
Thus, if three integers none of which is 0 satisfy the equation
x? 4yt = 2P, Z even,

three other integers p, ¢, r none of which is 0 can be found so
that

P et = 73, T Cven,
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while 7 is numerically less than z. By the method of descent,
we goncliae that the equation '

28 4 yd =28

cannot he <atisfied by integers none of which is 0,
Kronecker remarked that this particular case of Fermat’s,
theorern gives a complete solution of the algebraic probletm
which coinsists in finding all cubie equations - O
ottt me+n= ~"‘
with rational coeflicients and the diseriminant. N \ff Ty, Tz, Ta
are roats of the cubie equation, then its dmerlmmant is by,

definition , ,\\’
= (21 — T5)2(x1 — Ta)2fen— za)
The substitution 2
M

=“:giv:ﬂ“é,db]_‘al]li.bl“a]_‘y_org‘jn
reduces the equation to g\he‘é:t;,ndard form
g Myf—i—ay—i—b—ﬂ
without changing\ the discriminant. The diseriminant of &
cuble in standgFd" form is
'\’ 4 D = —(4a* + 2707,
and thn\gmblem amounts to solving the equation
,w} 4a8 + 2707+ 1 =0
There i3 one cbvious golution

o~

NS,
~adrational numbers a, b.

a=—1, b=+
To find whether there arc other solutions with b different from
§, we sct
_3+& |

H—T T %-1
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Then
(4{13 + 27!}2 +1)

3 3
1+ s 1= @b =11

= 0.

But by Fermat's theorem the only rational solutions of the,
equation

4+ —1=0 \s}
are ) QO
r=1, s=0, or r =, § = 1IN

Now s = 0 implies @ = 0, and the equation m:\"

27t 41 =0
‘ N A
cannot be satisfied by a rational nun’:{Ber Conscquently,
necessarily r = 0, whence b = — 15,80 —1.

Thus, all cublc cquations mth Yational coefficients and
diseriminant 1 are
Wy dwr%n_arm org.in
or their transforms by th.g substltuhon

\\{“' x_'y—i_c:

where ¢ is an arbitrary rational number.
0
W Exercises and Problems:
$
1. Solyethe equations

@it +31 =y B arts =y (6 2 6=y

Am\{a) x =4,y = 1; (b) no solution; (¢} no solution.

D . Show that the only golution of the equation

‘,l
\ zt 4oyt = 22
in positive integers without common divisor jsp=y=2z=1
8. Solve in integers
xiz + 1)

— g
3 ¥

Ans.z =lora = —2,andy = +1.
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4. Show chat the equation

z8 gt =
has no solafion in positive infegers.
B If .
x® + yt = 222 N
and #, g, z are without eommon divisor, then x =y =z = *1, , “‘\’
" &, Bolve the equations §\ Vot
\/
1 i
@D oy mporep N

2

D
dns. (e =lorz= —2andy =1; (B2 =0,y =\\1}} = 11,
y=0; 8013,y =2,

7. Netther of the equations ) x:\\;
4
e T & o
has soluticns in integers excluding & = —y, 2= 0.

8. The only solution of the equatious,’:;«
ot — agg*yz_éﬁriw,d braulibrary.org.in
sz = 41,4 =0. ' S\
9. Show that the same holdg for the equation

.’\jéa — 3y =1
W\

10. Show that the gnly integers satisfying the system
N r1=4, 1=2

are x = —1, ;;’6,z= +1.
11. Th{;\\{n]«jr golution of the system
=\ 2+ 1 = 27 2y + 1 = 32

gpitive Integersis s =y =2z = L.
N 2. The only solution of the gystem

2 — 6yt =1, 2 — =1
In positive integersisz = 5, ¥ = 2,2 = 7.

8. One More Fermat Problem. In2 Ietter_to Mersem;fle in
August (day unknown), 1643, TFermat mentions & problem
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which we state in his own words: “Trouver un triangle duquel
le pluq grand cdté soit quarré et la somme des deux autres soit
aussi quarré.” This problem has infinitely many solutions,
and the simplest of them indicated by Fermat is exprossed in.
very large numbers: \

4,687,298,610,289; 4,565,486,027,761; 1,061,652,292, q,g'o‘ )
In the statement of the problem of course, a 'Lrg;m--angl(
triangle with integral sides is meant. $

Tct the sides adjoining the right angle helg “3]’1(]. t and the
hypotenuse be d2; the problem requires us\fj find two positive
integers ¢ and b such that

a
\.

atb=c, aXP=d

Wec may confine oursclves fo, s’eekmé, only relatively prime
aand b, Infactlet @ngi%adauﬁbﬁa%g[& Lhg fPe, where ¢ ias no
square factors. Then ¢ and d are oth divisible by 7. Let,
therefore, -

K
a = fTea, \\‘b = f2f, ¢ = fv, d = f3:
on substitutingf ‘we get
R R RS CRE

80 that{ 'y and 82 arc d1v1‘~1b1(‘ by ¢ and, since e has ne square
fact@?s ~ and & will be divisible by ¢ also. Therefore

AN

m:“\j’ a4+ 8 =0 (nod &), a? + B2 = 0 (mod &%),
' whenee

(@ 4+ )2 + (@ — B8)* = 0 (mod €)
and
a — =0 (mod ¢).

Sinee @ and B are relatively prime and of different parity, we
must have ¢ = 1,



SOME DIOPHANTINE PROBLEMS 415
The preblem is thus reduced to one of golving the gystem
abB=7v, aFF=i |

in relatively prime integers «, 8, and all other solutions of
the problem will be given by o N
w=fa b=pg o=fr d=fi )
N\
We can, therefore, limit ourselves at the outset to rglggis?é‘ly
prime @ snd b that are also of different parity. Suppésing
a > b, ot us set \:-"\\"‘
a—b=e \g
Then the equations AN
g+ b=rct a* 4+ b?;‘i.@‘

give A\
24 — :’;,zgz,.' (4)

and d, ¢, » are odd n‘umbeI'S-“.%,dbraulibrary.org‘jn
_c’ﬂ:é"’:” il
K 2 -
must be positive, cz\gfé: which is equivalent 1':0. the inequality
¢ > d. Thus th¢ problem i reduced to finding all the solu-
tions of equatib®y (4) in positive integers, relatively prime i
pairs, d, ¢, gythat satisfy the added condifion ¢ > d.
E“?.(us»ti\ojﬁ‘(ﬁl) can be written in the form

O\
“",:3\ ot 4 ¢ : + ¢ #_g)ﬁ = i,

i..\;*., —Hz—"‘ 2 i

r\i‘ncncc, choosing the sign + Pfop?ﬂ)’:
2+ e ¢ T ¢ = .
_gz_e’:pg_qa 5 2pq .

and

Q= pi gy, =t I
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Since p, ¢ are relatively prime and of different parity. ome of
them must be even and the other odd; the second eq nation
shows that p is odd. Correspondingly, there are two numn bers
r, 8 such that

O
d=r24s% p=r:— s g = 2rs. A
<\
- The equation ;\"”}\ .
?=p'— ¢+ 2pg ,\u’}‘

can be written in the form ¢ &
)

¢* +2¢° = (p + 9%
whence O

¢+ gV =% = (o Hav -2
and ¥
¢ = (o = 20°) ) ¢ = 200
5",‘
As to p+ ¢, we ca-nmssuﬁyrai]:hb@abp.opgﬁitive, ginee in the
contrary case we can changeip, ¢ inte —p, —¢. Thern

J’S-\I- q = p* + 2¢*

and \\\.l
p = pf + 22 = 200 = 1> — &% g = 2rs = 2p0
or 4]
:\..} T8 = po.
If A
N\ r d
RN p €1

'"\ivh’ere ¢, and. d, are relatively prime, then
"4

r = tdy, p = lcy,
§ = ucy, ¢ = udy,

t and % being relatively prime integers.  On substituting these
values into the equation

p? + 202 — Zpo = 1 — §%,



SOME DIOPHANTINE PROBLEMS _ 417

N\

we get _
(el + 2dDu® — 2eid ity + (2 ~ et = 0,
.whence
w _ cudy £ /37 < gt
t T dyiE
It is nocessary, therefore, that 2d} — ¢f should be a squarel )’
let O
2df — ¢f = e}; N '
then e\
ey £ oey o\

1 d¥edE

. \Y; .
Thus {rewn one solution 4, ¢, & of equation (}{}another solutu?n
A1, 05, ¢, of the same equation is derived '@d, uniess g = 0, in
the new solution d) < 34, In fact, iflgs= 0,

1 1t o 1 N <

rE < 4{{3.5\‘:;w,gblﬁu?lnibj-ary‘m,g‘jn .

and s¢ d; < id. Corresponding to ¢ = Olwe _have p=*1

and d = ¢ = ¢ = 1, Frof this consideration it follows !;hat

from any solution wifrﬁ{% > 1 we can desecend to solutions

dhy er, €1} da, o, € dsNGs, €55 . . . such that
.\'d?’5d1>dg>d3> ey,

and this pI‘OC,B:SS" of descent will end only when we reac:h fize

solution {{j;,l Reversing the process, ‘from this psi,rtlcuA r

solutiop W can ascend to any other solution of equation (4).

This J'ff;i’;ersal of the process can be earried out as follows.

~Harst we find two relatively prime integers ¢, « from‘

' U el £ 6’1’
t g+ 24

. . - . rmined
where ¢, d,, e, is some solution. Next r, 8; p, 0 a1¢ dete

by



/
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r = {d, § = ey
p=1tt, o= wdy,
and finally
d=r®+ s% g = +{p? — 2a%),
+e = (r? — st — 2rs)? — 8%

Let us start with the solution dy = ¢, = &1 = 1. Then\‘fn}.

the fraction w/t we have two values: « \J
Z N
< 3

w_ 0 u_2 .
i3 ¢t 3 .s\‘

The first posmblhty does not lead to any IKJW solution. The
gecond possibility gives

u—Z, t=3, ?"=3’ S..—_‘:z’; P=3| 0-12’

N/
,.

d = 13yww. d:blla.ui;bral £.org 389

Starting from this qoluh@n ‘we have

w13 -239 (226 _ —2 u _ 252 84

whence

T 339_\ 339~ 3 1 339 1Ii¥
whence :"',
N \,/
“ —x'&‘? t=3 or w=28, =13
Corre%ondmgly,
‘:’;“ =39, s = —2; p =3, ¢ = —26

~\::\; d=1525  ¢=1343, o= 2750257,

/and .
r—1468, s=284; p=118, o =1002
d = 2,165,017, ¢ = 2,372,159, e = 3,503,833,734,241.
This solution is the first in which ¢ > d. The correzpond-

ing right triangle of smallest size as required in’ Fermat’s
problem has the following sides:
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2
a ("—i"_e = 4,565,486,027,761;

2
b= 32—_ = 1,061,652,203,520,
and the hypolenuse

d? = 4,687,208,610,289,

¢\
There arc infinttely many such triangles, as the equatiqn’\:\
2dt — ¢t = e? o\ R

has infinite] Iy many solutions in which ¢ > d. “‘ch proof of
this, which s not difficult, we leave to the redder.

9. An Ancient Preblem. Itis s charactm}xhc feature of the
theory i numbers that simple and, e%sﬂy understandable
problems can be given long before angneans for their solution
are availuble. Just such a problem was discussed in the

Middie Ages by Arab scholars @%{:pj so‘—mllc‘d congruent
mumbers, A positive integeng Js called & TSR R ber

if & rational fraction A caz. be'found so that both
h? 7 2> and hE—a
" 1 t
are squares.  Clearly*if we wish to determine whetlier or no

ais a congruent; mamber, we have to seek integral solutions
of the Dtophantme system -

v tapmn, @

Even, a’r\he present tire, with mighty tools available, there is
nositre and general way of ascertaining the possibility of this
Systém and, in cage of its possibility, of finding all soh_ztlons
}JI‘ an arbltranly given a. However, for some particular
values of a, such as 5, 8, 7, cte., a complete solution is possible.
Here we shall solve completely the system

2t Byt =2t AP by =

.
N
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in positive and relatively prime integers , ¥. We nolice first
that = and ¥ cannot be both odd, for then x* 4 5y* would be
divisible only by 2 and not by 4. Moreover, £ mush be odd
and y even. Then the equation

z? + by? = 2* A

is satisficd in the most gencral way by setting }

Vb= 20 sV =B, 00

4
.m\\.

z= +(r? — Bs?), y= s, 2=+ B5g,

Simtilarly the equation : RS
x? — byt =Nt

whenoe

v

is satisfied in the most gencral way by sebting
gl R,
whence N

s =46, (o =2fg 0= £ — 507

If y, as we supﬁo\ée’,"is a positive number, none of the num-
bers 7, s, f, g Wil be 0. Moreover, » and 5s, f and by, are
relatively prme and of different parity. Comparing the
two valugedf y, we have

N\W
L) rs = fg,
N g,
a.nd}:the most general way of satisfying this equation is to set
'n\",
@ T = ab, f=ac

8 = ¢ed, g = bd.

Since r and f can be assumed to be positive, @, b, ¢, d will be
positive integers and a relatively prime to b, e, d; b relatively
prime to ¢, d, @; ete. On comparing the two cxpressions fov #,
we get;

a%c? + 5b¥d® = + (a®?® — 5eid?),
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and in the [zture discussion we must treat the sugns sepa- ,

rately o
In sase of the sign 4 we have o

cXa? + 5d%) = b¥a? — 5%

and, since ¢ and b are relatively prime as well as @ and 54,

SR

N

we must have O\

‘..\\ v

at + 5 = b, — b5d? = ¢,

Thus from one solution of our system we descend to ahet?her

in which « < g, since .\‘
¥y = 2abed. W
. . oN\Y
In case of the sign —, we have \
¢*(a? — &d%) = -r—?:v“(a’2 Bd“-),

whenee again o

s

— 5% = -—bg, s, V@‘Md’_dﬁ%alﬁlgl Ary.org.in

In this euse we have a systera’ d]ﬂ'ercnt from the original one.
This system can be repla&g‘d by an equivalent system

— b‘\¥ Qaz a? - &d* = %

Now a musl bes ew:n and b odd. From the first equation,
written in the form

R bt - 202 = ¢,
it folluwsi{hzit .
A\ b+ayv 2= LtV 2

a:nd"\ . . .
O b= t@r—2), a=2pg c=r+A
On substituting this into the equation

- 1‘32 __ ag 5d§

we pot, :
pt + 4¢* = 5%
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Of course neither p nor g is divisible by 5; but then with a
proper choice of sign

p? F ¢* = 0 (mod 5).

The cquation itsell can be written thus: O

2 4 4g2\2 27 42\2 AN
e & R

and, since .“"\"5

p?. + 49.2
— and 530

are clearly relatively prime, we shall hay&@

A2
p?. i 4q2 2 $ .2 "‘\ )
5 = p? — o?, - _;"H_:"%ja': d = p* +d%
a s W
whence ™

N
pt = pt — o ARENPA O IR — % — po.
We shall show n0w<th;,t the minus sign is impossible.
Clearly p and ¢ are @9\]1 odd, and in casc the sign — holds,
,\2;}‘ gt = Hpr = 2 (mod 8},

 {
> el

whence )
2N

A pr = 2 (mod 8)}.
Also 0
AYT g em e m 2 mad®)
ia@éhce, because g and p are odd,
&}w @+ pt—o?=2— ¢ =2 (mod 8)
or
o? = () (mod &),

which shows that o must be divisible by 4, and this is in
econtradiction to the congruence

pr = 2 (mod 8).
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Thus .
pr= ot —at oo, @ =pP ot =
and
pra. p—q9_s9
T2 2 505

Suppostug thal o # 0, we find four integers «, B, v, §, none

¥ 4
 §

of which is 0, =uch that :A;\\.;.
\.
p_;tg = Safi; p = oy, <:\§“
L 4
— AN
Rl vE; s = 488, \\\\,
’ D

whence ] ’ .\:{,
p = vb + Soff. '.(:}

On substitutine: these expressions 111.\
K

p? = p? ﬁ.a{‘q_w}pw dbraulibrary.org.in

s\,

we get, after obhvious Q1m theations,

By* -+ 168 9\‘< afys + a2(@56 — 79 =0,
whence o
@ 3491« £ /o = 25O
x"Q“'a - y: 4+ 1687

Since T@l 33 are relatively prime,
N -~
\{'\ 7! 25(2.8)
not be a square unless
Vs =, v 5@

in which cuse

Rl
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Thus fro:h the original solution of our system we got anothor
solution -y, 28; ¢ 6, but 28 will be smaller than y. To prove
this, notice in the first place that

p? + 492 = 5(p* — o), O
g0 that A\
pt — et > 0. ,,\{\:\
. O
If po > 0, then it follows that ~*
_ _ »\K }
4p0 < pi &(/
On the other hand, \\\\:}
y = 2abed = 4pgbcd,\\'
whenee \?}
p é g}.:.:‘:}
*}\. \V
and so p M
\;{T @ral Y- Or'ﬁ 12 y
But R /\'(
&,‘ o = 448
and finally | AN
RS, lol _ ¥
x\.} 2'6 é ? < E
If po < O“tal’l'en from
¢t = p? — o ~ pg
it foﬁ%% that
i\»" o2 < — po < g*
<>‘and
gl = %‘
Apain '
<l oy
28 = 5 < 3

Thus, in all cases, 28 < y.
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Our conclusion was derived under the assumption that
¢#0. Ilv =0 then p = 1, and correspondingly

p=q¢=1, a=2 b=1  ¢=83 d=1
From this =olution of the system

a* + bd* = ¢ a? — &d? = —b¥
we get . N\

/AN

and
o= 41, y = 12, z = 48, t= 31~'\\

is & solution of the original system
N\

2yt =2 2t - Byt 2
It foliows from the preceding considetations that from any
solution of this system different froma\e.= 41, y = 12 we can
descend i another solution with gw‘alleg é;reitlhgl:' directly or by
passing through the int-ennedigté’syg\{ém aulibrary.org.in
1:2 + 5y2 = 22,“”‘ x? — Syﬂ - ._.82’ ] .
and the process of dqsséﬁﬁ\ will continue until we reach the
solution. = = 41, y = Reversing this process, from the
solution & = 41, 3,.=32, 2 = 49, = 31, we can ascend to any
solution of the phopbsed system which thus will be completely
solved, The {®ay solutions multiply is iﬂustrstted by the
following ) ‘a\gfa,m in which (1) denotes solu?u)ns of the
Or'igina]hs'ygtem and (2) sohttions of the intermediate one.
oy )
O

\ 3
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We shall apply this process to finding some of the solutions
not involving excessively large numbers. We gtart with

a=41, d=12 b=49, c=31 (1)
O\

N\

and pass to another solution (1}. We have
)

J=41-31 =1,271, g =49 12 = 58% \

r=41-49 = 2,009, s =231-12 = 3?‘2,; \/
and N

z = f* + Bg* = 3,344,161, y=1 4%6@6

z = r? + bs? = 4,728,001, f = JI],279,

ig another solution (1), Now from N
vy=41, B8 =85, 6—4‘@\\. g =31

we ascend to two solutions (2). F1rst we determine relatively
prime §, a from \d
5 3Bywe d&paulrbﬁm -y oBfin— ef
o I w4 F 1687
W have
§ , .2 2})7 1 3 _ —781
5827 "1  a 2,37

Dropping the E(*-’oond p0331b111ty as leading to very large
numbaors, eta e
K =1, a=1
and d(‘\erimne
»,\ p=ay =41, o=485=24
o p=nvi+5aB =71, +tg=11
\ affter which

a = 1,562, d = 2,257, b = 4,799, ¢ = 5,283
is a solution (2). From this solution we ascend to a new
solution (1) by computing _
f=ac=8252046 g =bd = 10,831,343
r = ab = 7,406,038, s =c¢d = 11,923,731
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ard _
¢ = f? + bg® = 854,686,219,104,361
g = 2y 178,761,481 ,355 556
z o= r? 4 Ba? = TB7,067,390,409,249
f = By — 2 = 518,493,602,732,120.

Thus the three solutions of the system
@ 4 Byt = 2%, x? — byt =

H

427

in amallest integers are QA \/

w= 41, oy =12, 2=49, = 31
z =~ 3,344,161, gy = 1,494, 696 '\'
z = 4,728,001, b= 1132700

$74,696,219,104,361,  y = 178,761,481,355,556

TH7,067,300,400,240, ¢t = 51339\3 602,732,129,

and there are no other solutions with*siwaller .

It

£
4

It

Exercises andy Isibblems

*w
1. Show thut the system * ww-dbrauliby "Ary.org.in

s

x2+2y2=zg 22— IyF = 1?
Q"

has no solution in positiy Q"‘n\&‘,gers
2. Show that the bé@q is true of the system

= 4
oy = 2 g

ifp =3 (mod Sj s\s,a prime.

8. Devi 1§k at\hc method for the complete sot

'\\" i ot — 2yt =

W\ .
andfipd two solutions in smallest integers.
~\ &\, Do the same for the egnation

/ b+ Byt = 2%

ution of the equation

B. Show that the equation
xb — Byt =&

has no solution in pesitive inbegers.
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6, Show that the system
at + 4d2 = B, ot + 3d

[l
@
[

has ne solution in positive Infegers,
7. The equation &\
x4 2ty 4oyt =2t \

likewise has no solution in positive integers. A
8. Show that the system 4 (@
¢ 4O =dy, o 4 12° = a2 ’.\:\““‘3
’/

has no selution in positive integers. \\\
9. Show that the only sclufion of ihe cquatlor\i\

N
x*+xy’+y‘=323'\'
v

in positive relatively prime integers is o3& Jr‘— = 1.
10. Devise the method for the complﬁic»solutlon of the system

257 — y? z*,‘sﬁmﬂ—l—y?—&l

and find three solutions }fﬁ\"éﬁﬂﬁé‘?“wg org.in
11. Do the same for the syst‘m

xt ..,Q;}‘= 22, #t — Gy? = {2
12. Show that thé{}acﬂon

. \ z? 4 22
s\l - =
o \./ 22* ¢t

can be a s{lgﬁre only if it is equal to 1.



CHAPTER XIIT

N

LIOTVILLE’S METHODS N
N

1. Object of This Chapter. The theory of numbers botrows
its toole of investigation from almost every branefhof mathe-
matics. A great many of the important quegsﬁid:{s are dealt
with i the most natural manner by goemétric methods,
and such developments constitute the soddalled *“geometry
of nuriiers.” The applications of andlysis to the solution
of ariitmetical problems are nwragrous and are gaining
steadiiy in importance, so that, gt\the present time, the most
brilliant advances in the theqry'of numbers are due almost
exclusively to analytical, &éﬁh’&ﬂl@’.-db}muyy‘gp%ﬁ}lgr the
character nor the size of$his book permits the inclusion of
anything, with one exedption, concerning either geometrical
or atutytical metheds)in the theory of numbers.

Since its very indeption the theory of elliptic functions has
been an abundsZnt source of a great many peeuliar and inter-
esting arithietical theorems. . It would be, of course, impos-
sible to spﬁéﬁk here in detail of elfiptic functions. Fortunstely,
as Lioyyitle (1800-1882) has shown, their use ean be super-
seded by some very general arithmetical identities which
el{he'l can be derived from various expansions in the theory

b elliptic functions or established directly in the most ele-
mentary manner. Onee the fundamental identities are

established, by their specialization and adapta_tion, mnumerla-
ble speeial results are obtained in quite & simple wa,y.h_ n
this chapter we shall confine’ ourselves to only & few applica~
Liouville’s methods;

tions, intended to show the fertility of
429
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and, as a crowning achievement, we shall produce a complete
solution of the problem concerning the representation of inte-

gers by sums of three squares.
2. Arbitrary Functions. Conditions of Parity. In what
follows we shall deal with arbitrary functions O
F(xayaz) f:\t\'

defined for integral values of the arguments z, ¥, 2 and é{{%ject
to certain conditions of parity. We say that F(.r :%Ufs‘ i an

even function with regard to x if (L

F(_x}y!z) = F(a:,y,z) N\ v
for all infegral values of z, ¥, 2. Slm],hx}}y Fix,y,2) iz an

odd function with regard to =, if \‘
F(—a:,y,.z) F@;y;z)
for all integral va]ues of (ﬂ;. In particular thr lalter
r library.org.in
implies

F\(O y z) =

With regard to the\gdqrr' of variables g, z, the function Fi+,i7,2)
is even or odd ace ing as

;‘\'F(I —Y, _z) = F(:L‘ yrz)
P\l
or \i\’

F(a:,—y,—z) = —F(:r,y,z).

\"}\s an example,

) 3

™

Flz,y,2) = zyz
is an odd function with regard to each variable, but is an even
function with regard to the pair ¢, z.  Another example s
Flz,y,2) =0 1if 2= 1
F(tl,y,2) = (y — &)~
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This function 18 even with regard to x and also even with
regard to the pair g, 2, but neither even nor odd with regard to
¥ or z iakien alone, : .
3. The First Fundamental Identity. The first fundamenta
identily involves an arbitrary function F(r,y,z) defined for
all integrral values of its arguments and satisfying the following{ ™
conditions of parity: _ O\
F(»-:s,y,z) = —F(z,y,2), Flz,~y,—2) = F(«'f?a?{?z)!
F{0,y4,2) = 0. (..'}"
Let = bhe an arbitrary positive integer, M > 20 be two
positi»e numbers the nature of which is nor.""s%eciﬁed‘ We .
shall rrinsider partitions of n of the following types:
{a) n = n® 4+ pi + (?Q’:{}#)d,
(B) n =i — pi S8 - wd.
(c) m = Mb? + ul PRAL"
In (o) and (b), ¢ is an integeR Dositive, 0, or negative, while
d and & are positive infegers. %);} E‘l’wlé‘%{llgl‘?’f‘m?eg‘im(imon
A > u > 0 there is onlya finite number of partitions (_“) and
(b) 3f there are such~partitions at all. In (c), f is an Integer
positive, 0, or néghtive, while A and 4" are positive MiegeTs.
Cloarly there is :%ly a limited number of partitions {c}.
The ﬁrst’ﬁ\ﬁ;:ad;l.mental identity can be presented thus:
N 25’1(5 ~ 2.4 4 ?:,Qd + 2 — é +

:“\.‘.

.\\"' fa)
A\ 2”5 %A 4,226 8=

& @
y EF(A_]_A",,EJA—-A’)—}-T"U:

e}

the sumunations heing extended, resp
tions (), (b), (c). As to the complem
are

actively, over all parti-
entary terms T; U) t'hey
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. At '
1 U = EF(A + A’,A_ﬁl"é—,& - A’),
{d}

where the summation extends over all reprosentation: of .

in the form \

A+ A’)I A — A f:‘:\'
2

, (d)y n = ?\( + p——— A" = A {mod 21

with positive integers A and A’ of the samoe I)a.rit-y';‘:afi?i

) ) A\ ¥ _
T = 2F(2|s] —7,1s],2|8] — ) i=12380..,28 —1,

(e

A
where the summation, for each soltlti(Jn@fN-he equation,
(£) m = Ns" P’
is extended over j =1, 2, 3, ~.",:g.w, 2ls| — 1. Tt mus: he
understood that whenever H%nt%}‘%us of one of the indicated
LATTAT N T 1brary . org.1n .
types are absent, the corresponding sum must be replaced by 0.
Despite the complicated appearance of the fundamental
identity the proof 0[@{; is, indeed, very simple. Consider

& \/

first the sum LA
S 5\ FF(s — 2i,d + 1,24 + 2 — 5)

¢
Y @
and sp]j:t.\’i't\int-o three parts Si, 8, &3, which correspond,

rcspect%iel’jr, to the salutions of the equation
..\
(@ n = M2 + uld + 1) + A5,

“hpAvhich 2 4+d — 6> 0, 2 +d—5=0, 2% +d— 5 <0.
\To every solution ¢, 4, § of () in which 2¢ + 4 — 6 > 0 the
formulas

=8 -4 d =24 d— 3, 8 =3

give a corresponding solution of the same kind, for we have
conversely
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= § -, d=2+d -¥, '§=4¥.
Notice besides that

¥ — % = =5+ 24 d+7 =441
20 + 2% — ¥ =2d 4+ 2 — 8.

When ¢, d, & run through solutions of the first kind, ¢, d', 5' N\
run through the same solutions. Consequently e \
AN
Sy = SF(6 — 2%,d+%,2d + 2% — ) O
= ZF(¢ — 20, d' + &, 4@: - &);
but ‘\

F(e — 2, d + 4,24 + 24 -s-:S\)~
P(—5 + 2,4 + 1,24 + 2i/8) =
P — 2,d 4 §,22 5.7 8),

> ¥ "4
O\
and s W
"'0

AN
8 A w&l,{:l braulibrary.org.in

L Y
L

whenrre Sy = 0. N

Weo turn now o he sum S; corresponding to solutions of
equation {a) in w\m\ﬁ 2 +d—~5<0 To each such solution
the f ,rmulas N\

h*"d—[—z A =d, A=5—d—~2
gntit I\ésr\rvspondmg golution h A, &' of the equatlon
‘3.\\ (¢) m = N + ph -+ AAA
~\ "\tn :;x‘nch

N

AN —A+2r>10

Conversely, to each solution of this nature correspends &

golution
—h—a d=4A b= AT
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of equation (&) in which 2, 4-d — & < 0. Consequentiy
Ss = ZF(A + A",hJA - A’)J
where the summation cxtends over all solutions of (¢} sztisiy- A
ing the inequality :
\)
A" — A+ 2k >0 o
« \J/

1t remains to consider the sum S, corresponding t(ﬁ\@hji‘ions
of (a) in which 2{ +d — § = 0, or \\’
§—d ) %

3 A

VAl 4

‘z" —
For this value of ¢ cquation (a) bec-omt*.s\v

N ELR At
WO W, dbraclhbl ary.org.in
Unless, therefore, S\

7 —N@‘—i— Px:
with positive 1nteg§r\s the sum 8, reduces to 0. Otherwise,
d+6"=\gs, § — 20 =25 — §, d+1i=s

>

\J 2d + 2 — 6 = 25 — 3,
SO
and & @ﬁqsumo all values 1, 2, 3, , 2s — 1, so that
3:’3;\ S, = ZF(2s — j,8,28 — 7},
\‘_} r(mnmg through the values 1, 2, 3, , 28 — L.
/" The sum

= ZF(B —2,d +1,2d + 21 — &)
(8)

ean be split again into three parts 8}, S8}, 83, corresponding t0
solutions of the equation
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by n = A — u(¢ - d) + M5,
in which 27 -d — 8§ >0, 20 +d —8=0, 2144~ 8 <4,
respectively.  lixactly the same discussion as before shows
that

St =0
and O
8 = BF(A + A, h,A — A, O
the summ::: ion extending over all partitions 4“}‘.
n o= AR? — ph + AAA, '\\.“ _
inwhich 3 -- A +2h >0, Butas —h A% Amn through the
same set « values as kA, A" in equat.lon {c) we have also

S5 = zF(A a7, —hal ),

or beeause I'(x,y,2) is even w1th 1egard Wy e
= B A A

S, = ZF(A *A AT )

bl.a lib . . .
where the summation exteﬁés over all solutions bF (B &siavhich

A — A4 20 <0, Fm\a,lly, St = 0 unless
e } n = A§* — ps
with 5 a ;'1r):sitive integer, in which case
S= @@ G,s2 -3 i=1%3% - , 2~ 1.
From 48 discussion it follows that the left—hand 31de of the
fundaxgc\mal identity reduces to

’\ Ss + 8+ 82 + 8
~ *B}lt
~ Si+ 5
differs from

S + A3~ 8)

{e)
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only by tcrms in which A" — A 4+ 2k = 0, and these terms
combine to give U; also it is clear that
Sg + S; = T,

and so the first fundamental identity is proved.
4. The Second Fundamental Identity. If wo suppose tiay’

F(z,y,z) satisfics the conditions O
F(—x,y,z) = —F(:t:,y,z), F(ﬁh—‘y;“‘z) = —f((?f}yd
F(0,5,5) = 0 @

and repeat exactly the same reasoning a3 ﬁ‘t’im’c,. paving
attention to the fact that now F(z,y,2) ig,0dd with regard to
the pair 4, 2, we get the second fundamni;{‘-al identity

214(5—2@ d + i, 2d+2¢. a) —

()

SF(s — 20,8 i%a%bggrx g0

(&)

SHn + A'Z,?;\A M+ T =T — U

(e) ’\\
where the extent wf the summations indicated by (@), ih),
{¢) and the expm‘omon for U is exactly the same as in the frst

fundamentghidentity, while Ty = 0 unless
;"\'Qt

'\\”' n = A% + us
Wi@i{”s a positive integer, in which casc
Of=3F@s — 5,25 = §=1,23 ...,2L

Similarly T: = 0 unless
n = A8 — ps
with o positive integer ¢, in which case

Ty=SF(Qs—34,52 —3) =123 ...,2—1L
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6. Euler’s Recurrence Formula. The famous recurrence
formuls for the sum of divisors discovered by Fuler has
alrend been mentioned in Sec. 9, Chap. IV. Now we can
prove it very simply by using the fundamental identities in
which #{x,y,2) is specialized in a proper way. Let

N
f{x,y,2) = 01if either = or  is even; A
- ¥z A
— 3} . P v
#lz,y,2) = (—1) T "if both z and z are odd. {
Then A\ )

: &
Floi,y2) = —Fg,2), P, —y,-3&Fy.9,

F0,y,2) = 0,
O,y,2) N

and -ve can use this function in tlié K?econd fundamental
identity in which, besides, we Shall ﬁake r=%up=%

N ing that U = with thls “definition of F(x,y,2), we
shall have

X S, dbraulibrary. .org.in

3 (-1~ 2( T = D1 T Ty

{a) )\ (e}
whate the sumn&{hons indicated by (a), (), (¢} refer to the
partitions

L >

o

2 3i2+'ﬂ'+§5_+1d, 5 odd.

e A
O 8t — i 1 ad
A =ty Bre sl
”\:\'" )= 3h+h+ &A’ A"+ 4 odd.

As to Py — T, considering that only one integer positive
or negative can satisfy the quation -
st
n=T
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we easily find that in all cases
T, — Ty = 0if »n is not & pentagonal number;
3s? 4+ 5

Tl - Tz = (’_1)“‘_18 if M = T! & Ef £
In the sum L)\
\
2(_1)h+a . O
© : ) ,\u;\
to each term '\\,
SN
(—1yre N
corresponds a term, s NY%
\\

(— 1

obtained by interchanging A snd A’ » Smce A and A" are of

differcnt parity, the contributipn™ ‘due to such corresporiiing
terms W W, dbta,uhbral y.org.in

(— 1)h+& _|_( 1)+ =
whence it follows that\ \

2(_1)M A — (),
\) (e}
Thus we h@ve the following re@ult

2(—1\@'2(—1)" =0 if n is not & pentagonal number,
@ o\ @

N 22
S O =(-pms it a= 2+ S sz0 (4)
"4
the arithmetical interpretation of which will be given later.
In the first fundamental identity we are centitled to take

F(x,y,.z) = (if either x or 2z is even,
zts
Flz,y,e) = (—1) T "“(2y — 2) if both & and # are odd,
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for then
F(—x j.2) = —~Flz,y,2), Flx,—y,—2) = Fl2,y,2),
Fo,y,2) = 0.
The resuis will be .
N
D=1y 4 D=1 = Z(-1Ch A -+ T
(2} Y (e} \
* ¢ o\
where AN
"G
T=0 1f n is not a pentagonal number, >
1)1t if n 82+s\'}>0
= (=1 i = -7—'1\\\ z 0.
For the same reason as before ”3\’{, '
NV
2( 1)k+nhi =0,
ie) ‘ s
o that the preceding rela&n@ﬁ can%glﬁiﬁiﬂm padgpui into
the form
{ —1) 5 @(z 1)is = 3, (—1HHE - - A+ T
(e}
From this a,ﬁﬁ, (A) it follows that
5 1
2@) Pl -y
(rm ®
4 Nt 3 — A) B
Q"\ = -2"2 (—pp — )+, (B
’ ©
where '
¥ = 0 n is not a pentagonal number,
35 4 & §20

382 +3 if n.-—:-———-é-"?

-
'

_.( 1)31
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Since §is odd, we canset § = 2k — 1in (@) and 6 = &/ + 1
in (b); then (a) and (b) can be written thus:

32 —[—’c
= 3k — 1)d,
(@) n + { ) A
@) n = 1 oL+ Bk + D, O
'S\
or, changing  into —¢, - : g
Qg2 —[— £

+ @ + 1. LY

\o

(&) n=

Denote now by co{m), a1(m), ez{m) squ@F the divisors of
m which are =0, 1, —1 (mod 3}, resp( onely, then

E(’l) 3a+1 E( ‘1) ( 332 +@)’

(a)

www db auhbral y.grg.in 352 4 ?’
( 1) ( 1)‘0‘1 o ) !
(b \
where the summati ns‘ajn the right extend over all positive, 0,
and negative valpes of ¢ for whieh
N B+ ¢
O
\™
It Kﬁ\ams now to transform the sum

< e

s‘”

A )
~O SN (—1pmaar - ).
A% 2 © :

In the equation

_3r*4h 3, .,
o= 3 —|—§AA

AA' is an even number = 2¢+1}f, Taking the sum
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(=12 A — 4)
for A fixc::. we find easily that its value is

—2(2 — 1)o(M),

and conso¢uently X\
L INAPAY .\ \
B2(-1)8a" - 2) <
3}&" < h
is the sun, taken negatively, of all the divisors of 7 Cve(r

which sro divisible by 3. Hence \;..\
QN
20 . 342 4k
5 ;5( DMA(AT — A) = ~Eaa(a}:§\.,-—-—~2 ;
() ‘“t\ W
where the summation extends over all jfitegers h for which

3k + &>
—-—i—-q—w{,\ﬂvd braulibrary or g.in

Trassferring the first.form in the right-band side of (B),
changing k into <, and\“nbtxcmg that

m,(m“)\ﬁr () + aalm) = o(m),

we get '.\,

. s

E( Qfﬂ -l 1’) = 01f » is not 4 pentagonal number,

g{*—'l)‘ (’R _ 32 + @) - ( 1);‘-1_3_5...;:—-

=§§2—2-———+‘-—?r 320!

4
’.l/

‘.
S

and this is Eyler's recurrence formula.
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Equation (4) has also a simple arithmetical mesning,
Denote by w(m) the differcnce between the number of divisors
of m of the form 3k 4+ 1 and the number of divisors of she
form 3k — 1. Then (4) is clearly cquivalent to the recuzience
formula '

E( 1w (ﬂ Lt z) = 0if nisnot apentagonal ning ‘eﬁ'

..\\\'

if N\
=382—1—3 N

5 329'\(.

"N\/
Let us take, for example, n = 10; then since 10 g nov a
pentagonal number we must havea N

w(10) — w(9)" " ‘%éﬂh Brasv-Lrais) = o,
and indeed
w(10} = 0, m{ w(8) = 0, w(d) = b,

w(g) =1;
@&1—0+0+1m

Again, for ny *—{&2

w(12 \<~ w(11) = 0, | 010y =0, (7)) =
)\ w(b) =0

a‘t\d )

w 12) — w(l11} — w(l{]) + w(7) + w(B)
=1—-0—-0+2+0=3,

as 1t should be, since

—3): + (=3),
2

12 =3

N\

‘\ s
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8. Specialization of the Fundamental Identities. We take
now A = |, « = 0. Then the second fundamental identity
degenerates nto an insignificant and frivial equality, while .
the first bee nes
22}'(5 —wid 44,2 4 % — §) = EF(ﬁ + A k8 —A) .

{z} (B)
where the =2 mimations now indicated by (a) and (b) refgx‘i{&the
partitions: R N\
(@) n = ¢+ dé . "\\ )
(b) m = h? 4 A4, \
and hath % and L'V.&I'O = (unlessn = 32‘(,,3\\}-,’ G), in Whi(:h fage

El

T= {25 —7,8,2 — 7, .3',’—'-:',\1:’2, A
U= 2"2s7— 5,27 —28), W=12... ; 25— L.

The i niity (4), though ,.dp;l:;,r;%ﬁ ﬁgepial: cage of the first
fundamer1al identity, is stil} very importattiaeal will gerve as
& bastz i all the subseqﬁ'eht deductions. We shall assume
that O .
Flx y,2) %}}};hen T Or 2 18 even, '
O z4-2 :
F(:;:,g.\’g)’“i; (__1)_5" ty Fzr) when al_nd z.are odd,
where fﬁ;g}\'ié an arbitrary odd function of g Witk this
_deﬁni%u;we have
Q . = F(z,y,2)
{:(.’-_x’y’z) = “F(xaysz)} F(x,-—y,-—z) - W2k
a\"4 ) F(OJsz) = 0’ )
Was it should be. Considering that F(z,y,2) I8 now
function of g, it is easy to see that

Z;F(‘A + ﬂ’,k,ﬂ - A-’) = 0.
)

~

an odd
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For k and —h run through the same set of valucs, anu w0

DA+ A RA = &) = JF(A+ &, —h,A = A)
® ‘ b
= —3F@A+ A RS = A), A

(b)
whence the statement follows. Morecover {7 = 0, and z' ‘*0‘

unless » 18 a square = s% in which case O
= (—1)5f(s). A
Thus ¢
S(=1¥(d + 1) = —Daﬂa@@}, (B)

{e)
where the summation refers to the part-l.tmns

(¢) n =12+ dé’ s odd,

and the symbol {(_Nw%f@ﬂut&y@lﬁl%l%ymbolg in other
formulas, stands for 0 in_case n is not a square, and [ov the
quantity m<\

’\'\{“" (—1ysf(s)

ifn=2s,s5> Ol‘t must be remembered that f{z) Is an arbi-
trary odd funttion of =,
Supposg\i'}?)\? that
\§' F{x,y,2) = 0 when x or y is odd,
a,neL iet n be an odd number. Then it suffices to takc info
“Consideration only those partitions (a) in which & is even, 7
de and consequently d odd also, and only those partitions
(b) in which % is cven. When we replace & by 26 and & by 24,
the summations in (A) will refer to the partitions

(e} n = 1% + 2d3, d odd
(f) n = 4kt 4+ AA'.
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For even values of = and y the function F(z,¥,z) may be
Jefined in any way whatsoever, observing only the usual
conditions of parity. Denoting by §(i) an arbitrary odd
rynetion of an integer i, we shall take one time

Flz,y,2) = f(%) for z, y even, O
9 '\:\'
and another time N\
_y.' X z’s}‘ 2
Flz,y,2) = (—1)° f(—z-) for z, y, evenyN
"
This will lead to the identities : ¥
' A\
& + A _ x.'\ W
Ef(_T) = 22 f(a’“xe).Jr {sf(s)} ()
. (f) (e) ¢ N \ o
and "{}:’ e
: ; AN, T oaplimh '
> (—1)*f(9j££‘> e 1t e n
6] ..«Q (e} -
\J + {(—=1) % f(8)}. (D)

Finally, welneed one more particular identity derived from
(4). Thisfime we set
§"\:.:' Flz,y,2) =0 when z is odd or ¥ EVeIL,

aJ‘l.?i\Suppose that » is an odd pumber = 1 (mod 4). Then it

Ssuthices to consider only those partitions (¢) in which 8 is‘ even,
n which A is odd

while A and A’ are both evex. When we replace correspond-

ingly  and d by 26 and 24, and also A and A' by 24 and 28,
the summations will refer to the partitions

() n=1 T Add

() n = h* - 484"



446 ELEMENTARY NUMBER THEORY

For even values of z and odd values of y the function Fx. ¥y 2)
must satisfy only the conditions of parity. We may take

Flz,y,2) = f(g) for z even, ¥ odd,

the function f{f) being odd. The resulting particular ides “Ttltj(
will be

26+ 9) = Ef(A + A +

() (k)

N\

'S
N/

s—1 -\ )
23 f(k) — (s — 1)1@)35- ()
k=1 ) '\‘ 5

7. An Application. The identities found W fhe preceding
section, and many others of a similar nature, enderived from the
proper cheice of the arbitrary functionsy ‘f\urmbh a great many
arithmetical results of interest. HerftyWe shall conqder only
one application. We ghall take i In, the, identity (B), Sec.

W W, dﬁ(‘@bﬂtbrm y.org.in

Clearly, ~

~§;(—1)%— 0.
:‘ (e}

W/

As to U4

o
A& 2(_1)€d
’\..' P
11: Al be evaluated by eollecting first the terms corresponding
¢ same ¢. Let T(M) denote the sum of the divisors of M
\vho&,c conjugate divisors arc odd; in other words, if M = 2%m,
m odd, then

T(M) = 29 (m).

With this notation the result of the summation for a fixed ¢
can be represented by



> Tin — 13 — Tin =2 + Tn =39 = " " =73
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(—1YT(n — 42).

Letting + take all integral values satisfying the inequality
1% < o, the sum

S(—1yd A
(e A
2N
will be :“.\:\\..“.

T(n) — 2T(n — 13 + 27(n — 25 ~ - <~y
On the other hand, the right-hand side of (1‘3)‘5@’\’."

(=1l N
o - A
that ix, 0 if = is not a square, and &
(=1 g

*

if n is a square, P\
Thus we get a TCCUH&%C}?fﬁmﬂibTaulibl‘ary_m.g'in

Ty — 27(n — 1%) 4 20(n — 28 — * * - .

O = {(~1)*t}, {(4)
)

which can serve4d tabulate the functions T (_’n) and o(n). But

there s anq}:bé; interesting application of this formula. Letn

be a prime = 1 (mod 4); then

N

\\ Tn) =n+1, (=1} =0

n+1_

NOW & i : fore among the terms of this sum
Now 4(n + 1) is odd; thereio oy con be odd only

there is at least one odd term.  Cleal )
it m is odd. Moreover T(m) coincides with ’?hf‘» Sllffls (;fd ;h:;
divisors of m, if m is odd, and the sum of the divisors1 |
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and only if m is a square. Consequently, for some peedtive '
value of b we have n — 4b? an odd square o2, so that

n = a* 4 4b?
‘ O
if n is a prime of the form 4% + 1.

Thus we have another and extremely simple proof cf s’
famous theorem. Morcover, we know that with ptm[\\e a
and b this representation is unique, a fact capable,e} direct
proof in a very simple manner. Supposc that

‘&

e\
)

n= gt 4B = a4 4B
wherc ¢ differs from a. Let @’ > a, b’ S;ib\,”and
¢ = a -+ 2z, 2b’ ﬁ25 — 2y.

On substituting and sxmplﬂymg}%( get
WWW dh}:aflhbl ary.org.in

2(z + @) y(2b — ).

Let the fraction x/y ex:pre%sed in its simplest terms be §u;

then \\"'

s & = T, Yy =i
’\i;;x+a=3‘u, 2h — y = st,
whence { )
Q¥
\;. a = sie — i, 2b = ru + st

-
n = (su— 1)+ (ru+ st)? = (7* + (2 + u?).
Now 7, 8 as well as £, u are pusitive integers, so that
PP 4st>1,  24u>1,

but this contradicts the supposition that » is a prime number.
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Replacing n by n — 42 in the reeurrence formula, (4), we get

Tin — %) = 22(—13Tn — ¢ — ji) + (—Dimtg — 42);
j=1273,
and this expression being substltuted back into {4), the result
van be presented thus:
T{n) = 4Z(—1)*T(n — 4% — §2) 4 (~1){n} )
+2(-1)y Az,
where the double summation extends over all posnaive infegers
7, § such that ¢ -+ 72 < %, and the simple sunugra;mon extends
over the positive 1nt9gers £ such thaf ¢* g% To each term
of the double sum in which 7 # j there coxresponds an equal
term obtained by interchanging ¢ and §7» Therefore, the sum
of all ferms in which ¢ = J is an oven number and dropping
multiples of 8 we get the congmeme
Tn) =4ZT(n — 22) 4 ( 1‘}*‘— in)
e dbranlibrary o ifmod 8).

Let now n be a prisie number of the form 8k + 3. Sinee

zuch numbers canpgt\be the sums of two squares, we have

O e =0

for ¢ = 1,'2};3;.‘,"': ... Also {n} = 0and T(n) = Bk + 4, s0
that :j\'"” _
N STin — 2%) = 1 (mod 2).

,s

Thm shows that T{n — 2?) is odd for some ; that is, = —~ 22
~ ik a square of an odd number 5. In other words,
' n = 2 4+ 22
Let » now be a prime of the form 8% 4- 1. Then {n} =0
but in the sum
E{n — %
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there are exactly two terms different from 0. In fact, the
prime n, by what has been proved before, can be represented
in the form

n = k2 + Iz ‘;'\

in one and only one way if & and I arc positive and, besides, b
is even. It is clear, then, that the sum Q

Z{n — 1} O
reduces to two terms N
(n— k) + {n — B} = k* + 12 ,\E’Sl\‘fmod 8),

50 that

2(—1)Z{n — ##} &L 2 (mod 8).
. www,dﬁféﬁljbrary.org.in
Since T{n) = 8k + 2, we gefiagain
ZT (2% =1 {mod 2},

+\J i .
whenee it follows that Tor some integer j
o~ n-20=j
2N

or o\l

R4
N\ n o=+ 2
It;»ié'{’ﬁhus proved again that primes of the form 8k + 1 or
/b2 3 are sums of a square and the double of a square.

N\ 8. Jacobi’s Theorem. As snother important application
we shall give an elementary proof of Jacobi’s result congerning
the number of represcntations of integers by the sum of four
squares. Admitting for the integers z, ¥, 2, ¢ positive, nega-
tive, or 0 values, we shall agree to congider two representations

n=zxt+y2+22 4+ no=a"tyr 1"
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as distinet unless simultaneously

‘Tf:aji yIEyJ z":z, =t
With this agreement let us denote by Ni(n) the number of all
representations of » by the sum of four squares; then Jacobi’€™\
theorem states that A
. : o\
Nu(n) = 8{n) if  is odd, O’
Nun) = 24o(m) if 5 is even = 22m, m odfi.’}"

Thus, for instance, {rom one representation of #'= 3:

3= 124 124 12 4 0750
e=1  y=1, z=;§j\\“t=0

by changing the signs of x, ¥, z, abd\by permutations we find
8 -4 = 32 different representationy’and 32 = 8¢(3). Again,
from one representation of n 8-
9 = 138h 1 O pbrery-orgn
=1, ";z;=.'1, 2 =10, t=10
by changing the, sigﬁz\of z, ¥, and by permutations we find
4.6 = 24 different’ representations; as in this case m = 1,
we have 24ef{i\2 24, in conformity with the theorem.
Various ;w:gi“y'xs are open to prove Jaeobi’s theorgm; one of t_hc
simplesi(i}"ﬁhe following. It is easy to est?.bhsh, by quite
elem@tsjry considerations, the following relations:

N Nay(2n) = 3Ny(n) if n is odd,
~O° Na(2m) = Ni(n) if n is even.
N\ 3Suppose at first that n is even; then in the equation
on =@ty 2 (@)

x, ¥y, z, ¢ are all of the same pasity. Correspo.ndingly, the

integers
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£=x_j2-_y’ ?I.=x;y, §_=z—g§ 9__:_{:%t
satisfy the equation _
n=§g+q9+ {4 by
and, vice versa, from each solution of this equation, by means
of the formulas N

c=f+n y=t—mn z=(+6  LaN—0

s solution of equation (&) ig derived. 1"111;§§4§1=t.\x-<-1‘:11 the
solutions of equations () and (b) there eists a vne-fo-one
correspondence which shows that N

Nu2n) = Ny

Suppose now that n iz odd. .Thén in cquation (i} cither
only ore of the numbers £, 11,{;’,'“9 is odd, or only wi. cven,
according as 7 = 1 (medBhwbirszodg (mod 4). Al in
equation () among z, ¥, 2\ there are two even and two odd
numbers. Let us dcg:{te by P the number of solution: of ()
in which =z, ¥ are e{émand z, t odd; then, letting the cuvit and
odd squares occuﬁt all possible places, out of every one of the

P solutions we'gét six solutions, whence it follows that
A\

A\ N(2r) = 6P.

- O '
Agaih,if’ Q is the number of solutions of equation (b) such that
£ anid 7 are of the same parity and { and 8 of different parity,
/hen it is easy to see that

PN

\} ' Niyln) = 2Q.
But the formulas
$=E+TI|! y=£“‘?h z=§-+81 t=§-'_9

cstablish a one-to-one correspondence between the solutions
of () in which = and y are even, and the solutions of (b) in
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which ¢ and 5 are of the same parity, ﬂso that P = @ and
cuisequently

Ni(2r) = 3N,(n).
Consider now the equation £\
I i e o O\

with five unknown integers. It may not have any solutiﬁbns.’
But if it has, then in case » = 3 (mod 4) among the z452, £, 4
thore are three odd and two even numbers. Dem;rt’etby R the
uureber of solutions in which z is even and by S, %ah}ﬁumber of
those in which z is odd. It i3 easy to see thaf\"

R = 38. ".\\:
But on the other hand R and S are :eii;fessed by the sums
B = ZNi(n - 4h%); R0 £1, 49, ...,

8= 2N =) Eoubltdibd oo,
which are extended over alb integers % and odd integers i,
rendering the sargumefts’ nonnegative. Thus, for » =3
{mod 4) \‘

CIN(n — 45%) = §ENs(n — %), (e)
and this holds'}v;"k;en, hypotheti.cally, the equation
R s @

has nb. golution; for then both sums reduce to 0.

LBV = 1 (mod 4), then among the numbers 2, ¥, 2, 1, in
¥ there are one odd numher and four even, or else, but only
it case 7 = 5 (mod 8), all five are odd. Disregarding solu-

tions in which all five numbers are odd, we see that the number

of solutions of equation (4) with an even x is exactly four
times the number of solutions with an odd . This leads, in

case n = 1 (mod 4), to the relation-



454 ELEMENTARY NUMBER THEORY

EM (n — 47 = 421\&(“ = *‘2) (e)

where the summations extend over all integers A and =il odd
integers 7, rendering the arguments nonnegative.

By resorting to the identities (C) and (E) in Sec. iy ﬁq 18
easy to find a priori numerical functions satisfying i:\’x rela-
tions (c) and (¢). In the identity (C}) \ >

A
27N
%

>AAE “’) = 2 (s +9) +{s:><® )
= 3

{c}

(@) n = 4R* + AN NJ
(8) n = i* 4 2ds, \&, odd

we fake f(z) = z. Then in case W= '3 {mod 4), 4 and 5 are
both odd in {g8), and for ¢ ﬁxed”'

WW d.br@n@]lbl ary.org.in

is just one-third of thQ sum of the divisors of n — % while
for b fixed ~\

¢ ’\\/
¢ :\ EA + A
N 2
18 the su‘m”of the divisors of n — 4h% Consequentiy, for
-—\"{(mod 4), we have
\

3:, Zo(n — 4h%) = $3o(n — ©9).
\In case n = § (mod 8), § is the double of an odd number, and
A" for ¢ fixed

Zé

is double the sum of the divisors of

#n — i2

4

]
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so that for n = § (mod 8)

ot — 45 = 425("‘ - “'2).

Finally, in casc n = 1 (mod 8), § is divisible by 4; replacing{ ™
therefore § by 4§, we shall have

¥ 4 N ¢
A,

Sieln — 4 = 4328 + (n}, X O

(v} l“..‘
o A '4
where the sign (v) indicates the partitions (;."
e \:"‘§
(v) n = 1% + 8d3, & odd\Y

This relation we combine with one;ff\oﬂowing from the
identity (E): ‘ \
Nl g—1
A AY = 23 f(6 + z};%%*\i(s — Df(s) — 23 f(k)
(k) 63} “{‘;WW -dbra”ljbl'ary.oﬁg'ffn
k) S b + 4AA7
W = 12 + 4d8
by taking in it .\'\w’_
WO flz) = (—1)=.
Consideri,{igf,%tfat the partitions (k) and (%) are identical except
for notation, the result can be presented thus:
SO S wa 0 20 =
o ®)
\\ of
23 (~1)%l(—1? + 1] = {—n +1}.
®)

Terms corresponding to odd values of d vanish; therefore
when we change 4 into 2d, the final result will be
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43 (~1)% = {—n + 1}, ()

{¢}
where the summation refers to the partitions
() n = i + 8db.

The relation {f) ecan also be written thus: \ D
So(n — 4h%) = 431 — (—1)16 + {n},\
{e) O
which combined with (g) gives “\

20(?1—4?;2)—421—-( 1)d—(,é1) 16 4+ (1},

(e}
C ‘.‘

Now the sum W

1
™ X

&
zllwww(db {ﬂlbl gry 31 ]gam

for a fixed 7 equals three tlmes the sum of the odd divisors of
{n — 1%)/8 or, what is, the same, of (n — 22)/4, as can he ewily
verified. Denotin \t‘hérefore by #{m) the sum of the odd
divisors of m, welean present the preceding relation thus:

Eo{n — 4h?) = 122&(-’*—”12) + 1)

NV
In th ’Qrght-hand side the summation cxtends over all odd
mtege,rs such that 72 < n.

The threc formulas found for » = 3 (mod 4), n = 5 (mod 8),

\aﬁd n = 1 (mod 8) can be replaced hy two by introducing ihe
function

x(m) = (2 4+ (—=1M5(n),  x(0) = &

The formula corresponding to n = 3 (mod 4) will be

Ex(n ~ 4h2) = ﬂzx(n — %), ("
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and the one for n = 1 (mod 4) will be

St - a9 = (25} @)

It must be noticed that the summation in the right-hand sidf, >
of {¢') refers to all odd valucs of ¢ for which the argumen’t\ls

' nonnegative. Setiing . O

; | Nem) — 8x(m) = oln) O

; and comparing (¢} and (¢'), (¢) and (é’), we h&?ﬁe“

| Soln — 47) = §3(n — ¥, a3 mod4) (4)

W

\ & /‘

# =1 (mod 4). (B)

aln — 4k = 42 n ‘),

The proof of Jacobi’s the(nem is now almost immediate,
ww . dbraulibrary or g.in

In the first place "m,
N0 = K 8@ =1, w(0) = 0.
| Suppose that fo ’m, =01, 2 ., = — 1 it happens that

w{m) = 0. Then we can prove that w(n} = 0 in the following
IRENner, L&t 7 and in be even; then

ﬁ \ ‘\ Nin) = NuGn),  x(n) = x@n),
' antk’\
A win) = aljn) = 0,
‘i\‘ since by hypothesis w3n) = 0. Let jn be odd; then
Niny = 3N.3n),  x(n) = 3x(an)

and
- on) = 3e@Gn) =0
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-

¥ n is an odd number = 3 (mod 4), then it follows from (A)

that w(#) = 0, and if #» = 1 (mod 4) the samc conelusion fol-

lows from (B). Now w(0) = 0, and then necessarily (1) = 0,

w(2) =0, . . . ;that is, for every positive integer n
win) =0

AN
or N

Nin) = 8x(n) = 82 + (=1)Ma(), .\~

which is Jacobi’s theorem. D

In particular, if » = 4m and m is odd, the .m}mber of all
representations \

4m =2 + ot + 2 +'\t%.\\'

is 240(m). But z, y, 2, ¢ are either all’even or all odd. The
number of representations with even 27y, 2, tis the same as the
number of representations of m, that is, 8s(m). Conscquentiy,
there arc 160{(m) represéﬁtﬁﬁ&@ﬁ‘ﬂfh{ﬂi Herebiesum of four cdd
squares; if the roots of these Bquares are taken positively, the
number of representatiohs reduces to ¢(m). In other words,
the number of repr s@tétions of 4m by the sum of squares of
four positive odd niu\:lbers is the same as the sum of divisers
of m. o~

9. Additi :~\Identities. When we come to the problen: of
the represeftation of integers by sums of three squares, w2
shall n\eéd“identities of a character quite different from those
in Seé:, 6. Yet remarkably enough they ean be derived from
thém' in a simple and elegant manner. Our starting point

\wﬁfi he the identity (B) in Sec. 6, which we shall present here

in the form

S~ + ) = {=1) (), B)
(e}
denoting by (¢) the partitions
) n=124d?¥, & odd,
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and by ¢(z) an "arbitra,l_'y odd function of z. Let d”, & be
Lwo positive integers satisfying the inequality

2" < n
with & odd. The function f(z} being even, N
$(x) = flz — ") — flz +d) Oy
will be odd. Replacing n by n — d”8"” and chomlng 56‘1:.1,') a8
indicated, we shall have _ ) \

(&

AN
SV — a7 6 — J@ + a9 (VY
(e) \

- {1l D = o + )
where the summation indicated by, (c) wefers to the partitions
(€ n—d"" = 12 + o, & odd,
and the right-hand side is & u‘n exgdbraulibrary org.in

n—-d{a”usz s> 0,
PN
in which case it i \ »

.(-1)“"S[f(s B T
Letting d” 3” fun through all the values hub]ect to the condi-

hons PR{ s
g&“ dnari < n, ar.? Ddd
ang ‘taking the sum of all the identities referring to each

\\ystem d”, §", as a result we get
2(_1)1[}‘(& — drr ,',:) _— f(dr d” + 'F:)]
[CH

| = SU-DHG D), @)

{1
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where the summations indicated by (d) and (e) refer to ihe
partitions

(d) n =12+ ds +d78; &, & odd
{¢) n = 1i% 4 d8, § odd. O\
" The right-hand side of (P} can be transformed, by using J’\Bg\ :

fundamental identity (A) of Bee. 6, in the following mafiger.
Let AN

A\ 3
K2
Flx,y,2) =0 zorzis even.'\{:}\“
and otherwise either \>
o1 2g—z-1 L
a—1, K
Flo,y,2) = (—1) 2 2 3@y = 2f@)
or ’:’. "

N7
"t
wyww.dhb l:ﬂ&{hEBQFx org.in

Floy,) = (~B¥2° * uf(y).
Then we get two identii;iéls\

(\J
23~ 1F8f(d + Dpy(—1)F 2R + A — M)

(e PR T

Re % -+ 24 (—=1)Ledf s}
zz(—%d\*é Of(d 49 = J{— DR
N (n

(e) 4 AN
O + 2H(— 1)),
M\'ié}:gthe summations refer to the partitions

(&) n = 1% + ds, § odd
{(fi n = ht + AN, A+ A odd.

Since evidently

S~ 1AHR) = 0
N
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T 4 &~ A)(B) = —23(~15(d - 8)),

67} {e)
by eliminating the terms in the braces we get

(D 4 4) = F(~1)H0 ~ dfd + )

(e} {®
+ 2(— 1id —\@fﬁ);
(e) WV
and now (P) can be written as follows: o N
DD — @7 +0) = S + &+
@) /

= (=116 ~ D@ 4+ (@ - D@L @
& . . ’Nx\s.
Let ) :
Yi(x) = flz ) + flz - 9).
"This function, for a given % s e dbranlibracg aksdin Denote
by wi(n) the difference,
O -

L9 — 9ld + )]

wiln) = > [ld
S
oV -3 ~ s(d) — $O)]
PN . &)

wherg\i;’ih\e. summations are extended over the partitions

\§ (@) n=d¥§ +d'8; ¥ 8 odd

(B) » =ds, §odd.
\”

«\”\;”'Then (Q) is equivalent to

wo(n) + 22 (=Dl — 9 =0,

mmation ¢ yung through positive integers such

and in the su TS such
Since this. identity holds for any n = 4, i

that 4% < a.
implies necessarily that
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woln) = 0

This amounts {o the remarkable identity

SU@ — d) — f@ + &9 = 3 — DIfE@) — fO), )

16)] 1) _ N\
holding for any even function f{(z). O\

Suppose now that n is an even number = 2m, ands U B
f(z) = 0 whenever z is odd. Then, in the partltlons (g),

(g) 2m = 4’8 + 28", &, 8" odd
either d’, d” are both odd or both are even; glmllarly in (h}
(hY 2m = dg, 8 odd, .\
d must be even. If d is replaced by 24, thé partitions (k) will
be replaced by Y

»
N/

k) m = 5, 3% odd.

www,dh auhb ary.or
If d', d" are even, we can replace the y 3?(%12]};5’ 24 the cor-

responding part of the 5111{1 in the loft mdr‘ of (&) mll be
z)[f(gc(‘«‘- 2d”) — f(2d' + 2d")]

extended over thé,:partitions
N \ 7

\ Pmo= d's -+ d”a” &, 8 odd.

But by\(he formula (R) itself, in which f(x) is replaced by
(2x) e bave

§ff(2d' 2d") — J2d' + 2a")] = 3,6 — D){f@d) — SO,
' {&)

and subtracting this member by member from (R), we geb
a new identity

S — @) = jd + d) = Jdif0) — j2d)), ()

@ €3]
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N
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where the sign (l) indicates the partitions
(J) 2m — d!af + dHaH'; d!’ E!; . d”g 6!‘! O'dd.

Another formula similar to (S) can be derived as follows.

Lot F(z) be an odd function and let two positive integets QO

¢, 8" of which & is odd satisfy the inequality o
)
25 < o
Take in (B) n — d''8" instead of n and set '.j.: 3

¢(x) = Pl — d") + Plx +d9,) )

swhizh for a given @ is an odd function ’ui’.)s;.* Multiply each of
the resulting equations by o\

INY
)
Y — T/

(—18%

\WWW dbraulibr aro i
and sum varying d”, & | in. all possﬁ{laéuvéralyasl.'y XS4 Yesult we

get the following formuia
-\

(-1 A [F@si\— & )+ P+ &+
(@

.s;:." - ST G, @)

O\ @

whe@ the summations
b&fbre The right-hand me

refer to the partitions {d) and (e) a8
mber can be transformed by
c. 6. To this end, take

F(;c 4,z = Cif zorz is even;

otherwise

Pa,y0) = (~1) T ).
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After some evident simplifications we shall have
i

PACSY Y T (2d — 8+ 20F( + d) = {(—1)7F(s)]
On (tile other hand,
S-OFG+ D - (@, LD
and s0 ! :\‘ )

s-14222 S Ny
(-1 TG+ d) = D - §8)(~ V' CRFG + )
(e} (g} 'x:\ ),

AES(—1)FG + D),
NY (@

N/

whereby (T) becomes Q!
WWW. dbz“au;hbl ary.org.in -1

E( ViF( —d” + 9 + B+ a7+ (-1 *
@ Q

~\ i—1
(&2t —1y 2
- Seo| - LECD " e vy (1))
( NS
\%
In the same ssgay as we passed from (@) to (R) we pass from
(T to (Y™
Q”

%“* VT R@ — a7+ F@ 4 d)] =

E( 1)2dF(d} El'H F(d), (V)

(&) (R

the extent of the summations indicated by (g) and (k) being
the same as in (R). Finally, as we passed from (B) to (8),
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we pass from (V) to

E 1) 2 [F(df — dﬂ) +F(df + d”)]

i

= ST araa, (L

) O

the extent of the summations indicated by () and (k) h&ing the
same ag In (). N
10. Representations by the Sums of Thregf ,Squa:es We

tirn now to the identities {C) and (D) m\S“e 6. Supposing
n = 3 (mod 4}, they can be prescnted a\sJ fcllows:

SH*E ZEF"@‘-{- i ©

() (b)

i=1 &1
:S(Uw@if) ﬁﬁw&&m&M@tﬂ(m
(a) “~ ® :

Yere F(x) is an az@trary odd function, and the summation

refers to the Wons

SO (@) n = 4h* +db
<, (6) n =% + 2%

' Rt:glﬁi;t?;; by
"{\ — in + 1 — 2_d”5”,

™

\ Where @, §'" are both odd and
248" < 4n + 1.
Denoting by 7(x) an even function, take also

F(z) = flz = &) — fle + 4.
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The resulis will be

S )45 +)

o}

— e Sy i - @ - f i+ S

® Q O
N\
E(_l)h[f(d + 5 _ dn) _ f(d + ] + d,f.r):l ”;}‘s../
(@ ~.‘ 3
i 1 6’—1
LS T Ty i - ) 2@ )
(L] AL

where \\\

(@ 4n + 1 — 2475 =4y - do
(®) 4n + 1 — 24”80 4 2d4'8.
Take the sum of all &i¢H- %Hﬁ%t‘ﬁé?ﬁ%%ﬁg&ﬂg in all possible

ways d”', 8'; the result of theSummation clearly can be w Titien
thus: Q

\
\ ’~ 2E[f(d* Fi—d) @ i+ 2]
(@)

Eelﬂf LHr_ ) (L4 a)]

w\ i—1 6 -1 .
N ST T i - @) — @ i+ A
()
where (¢) and {d) indicate the partitions

(&) 4n + 1 = 4k2 + d5 + 2d'8";  d”, ¥ odd
@) dn +1 =i + 208 +2d"8";  d, &, 4", § odd.
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Notieing that ¢ and —< run through the same set of numbers,
wo have

XU — & 4-4) — J(@& + @ + )]
{u) .
= 2[\!«&3’ — d") ~ peld + A
@ RO N

where for a given ¢ o\
N/

0e) = o +9) + 1z — ) A"
an even function. Performing the ml.mmm‘{on or a given ¢
by formula (S) in See. 9, we get at once 3O

hld = d) — pld +dD] = 224[1'(3) — f& — 2},
) \ts)
where (¢) indicates the partltlons

{e) ¢n + 1 = 3,3-i— 4d5 8 odd,
www.dbraulibr ary.org.in
and at the same time ~;‘~

Sl A5 +9)

(e}

w = 2 D dlfi) ~ fG = )] (4)
¢ >" (e}

\ o
In & Bimilar manner we find
R

l

“2\2( l) 2 + 2 [f(di' d' + 1’-) ___f(di +du + 17)]
AL O @ o
o LS T @ - ) — 6@+
{d)
where

$i(z) = flz + 9 —flz —1)
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for a fixed 7 is an odd function. Performing the sumration
for £ fixed by formula (W), Sec. 9, we get
=1, 71 '

D=0 [eld — d) — dald 4 d]
@ ‘ N\
L BN .
=2 (—1) T T Al — Wy
fe) :,.\' ol
and at the same time :‘,}.‘\"'

E(_Uﬁ[f(g%s B d,,) f(d + 8 +d)]~\
(e} v

—2 (- 1) Bari -2, B
(e}
gsign (e} indicating the same partltlons g before

Formulas (4) and (B),are. ag;guwy%péelﬁmnsformatumq

of complicated sums into muc.};r simpler ones.  For our purpnse
we shall define f{x) as follaws
Jx) ¢ r:\O if  z? > 1
XD = f(-1) =
Then among the partitions (¢} we retain only those in which

’s\l
RS L E

Correaghidmgly, if we denote by 7'(n) the total number of
solggons of both equations
\’"\;~‘ dn 4+ 1 =ds + (d + § — 2)8"
dn 4+ 1 =ds + (d + 6 + 2)8"
in positive odd integers d, 8, § such that d + & = 0 {mod 4),
the left-hand side of (4) and (B) will be represented by the
SUMS

2T(n — k) and  Z(—1)*T(n — A%
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extended over integers A which make n — A2 positive. As to
the right-hand sides of the same equations, we shall evaluate
them, for the sake of simplicity, only for n = 2m, 4m, where
m is an odd number. In the right-hand side of (4) we have
first. the term .

N\
23 4/6), R
(e} A\
. . .,‘\\ o
which reduces to the sum Y
azd A0

taken over representations of # in the form\:m:\§'
= dg, § odd.
Now if n = 2m, this sum is equal ti)’{f‘
8¢ (m.)s

and for n = 4m it is

*16&’{?&}’ .dbraulibr ary org.in
Azsin we have the term N “
\\ 2Edf(f, — Zd),
but here we mv{&t‘tﬁke ;= 2d + 1. From (¢) it follows that
and bot§aators are of the same panty. Such representation
is 1mRt;&1ble if pn = 2m, go that in this case

N _osdf(; — 2d) = 0.

R\
The same will be true for the sum

s—1,i—1 .
2(__1)"7"+ 2 gf(i — 2d).
()
Thus for n = 2m we have

2T(2m — k%) = 8a(m), s(~1p7rEn — k) =0,



470 ELEMENTARY NUMBER THEORY

whence

T(2m) + 27(2m — 2%) + 27(2m — 4% -+ -

= 4a(m) (&)
T(2m — 1%) + T(2m — 30 + T(2m — 5% + -

= 2ar(m) (Y. N

In case n = 4m, the equation A
’\\..:',
dm = d{d+ 6+ 1) ')
iz possible only if & is even; when we set d = 24, ﬂi’ééum
—23df(d — ) .¥:$V
reduces to \\\ ’
) A

—4ZA, \«

) 3
where the summation extends over a’IL’i‘epresentations oi m

in th
e form W dbraﬂ’l«kbl ary.org.in

n& + 1
Similarly the sum ~<\
) i—1 e
DN-1) 7 af - 2d)
PR
reduces to A \J

’\.I
5+

”\:\ RE:
, §~ w 42( 1) 2
or, si;itg%

O 5+
<>.“ A+ E 1
is odd, to
—43A,

with the extent of the summation as before. Taking, there-
fore, the difference of (4} and (B), we shall have
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T(din — 1% +TWEm =30 + Tdm — 55 4 - - -
= do(m). (&)
Eguations (E), (), and (@) will lead very quickly to the
fundamental results concerning the representation of numbers
by sumns of three squares. But first we shall prove that the
nuincrical function T(n), defined as the total number of >
solutions of both equations _ A
dn +1=ds 4+ (d + 8 = D" D\
a1 =di (@ +a-4+20" N\
in positive odd numbers such that d -5 = Dg(;nod 4), has
alwnys 8 positive value. In faet "‘\
=20 +1, a=1,:'\\aj=1 -
is a solution of the first equatiog'\ga;t.isfying the econdition
d--5=0(mod4) if n is oddpwhlle d=2n —1, d=1,
8" = 1 gatisfy the second qu&tien and the cendition 4 + &
= ¢ (mod 4) if n is even. _{¥¥w.dbraulibrary.org in
By Jacobi’s theorem 1800(m) is the number of solutions of
the equation N
A= R E
in odd numberé\'\ Denote in general by Na(n) the number of
ropresentatiopy of # by the sum of three squares. Since
numbers | =3 (med 4) may be represented by the sums of
three ogdd squares only we have
I~
8a(iahE Nay(dm — 1%) + Ny(dm — 3% +
(O Wt 19 + N i 5

»\:\ﬁﬁd, comparing this with (&},
N AT@m — 1% + T(dm — 80 4+ - | =
)_ N3(4m__12)+N3(4m_32)+..._

This equation holding for ail odd values of m, we must have

Ns(dm — 1) = 2T(4m — 1).
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Now 4m — 1 represents any number of the form 8N + 3;
consequently

N8N 4+ 3) = 2T(8N + 3).
It is thus proved that the equation

SN 43 = 442 4" R

can be satisfled by positive odd numbers 4, &, &
number of solutionsg is A
1T(8N -+ 3). »

Setting . N v
i=%+1, ¢ =+ f”\?zﬂl;

oA\
¢\
, and\fhe

E 4
N/

\

we conclude that

L&
N _a:(:v+1) +y(y+l) Z(z+1)
2
that 18, every integer is \th(wﬁﬂmaﬁflﬁhd'ﬁﬁ &#‘gai@,gular numbers,
as Permat asserted without reveallng his proof.
The equation

2my \x2+y + 2% 4 £

in eage m =1 (mha‘ 2), by Jacobi’s theorem, has exacily
6o (m) solutions. wlth positive odd £.  Hence

&(m)\: Na(2m — 12) 4 Ns(2m — 3%) + -
and ou co"z’npanng with (F}

3T(2m~ 19) 4 37(2m — 3% + - -+ =
Ny Ns(@m —'1%) 4+ N3(2m — 30 + - - - .

\gince this holds for any odd m, we must have -
Ne(2m — 1) = 3T(2m — 1).

But 2m — 1 represents any number of the form 4N +1;
consequently

N:(4N + 1) = 3T(4N + 1).
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Thiz weans that every number of thé form 4¥ 4 1 can be
“reprosented as the sum of three squares, and the number of
representations is

3T(AN + 1).
By Jacobi’s theorem the equation o O
2m = qt + 92 + 22+ 8 RO N

has exactly 12¢(m) solutions in which z is even, so thag O
120(m) = Na(2m) + 2N:(@m — 21) + ON )
) 2N3(2m-*3§~2§+ Lt
Comparing this with (&), we have O
K72,
3T02m) + 6TBm — 22+ » - - = LV
N3(2m) R 2N:(2m — 25 + - -+,

and since this holds for every oddvn we must have
J{f.‘v\’\f.dbl'aulibral'y,org,in

Ny(2ud %= 3T(2m).
Thus, twice an odd nmﬁbe; ean be representz_ed as the sum of
three squares, and i%‘l'g\number of representations 13
A 37(2m).
1t rema,ips’@dﬁ Eonsider numbers of the form 8N + 7 and 4N.
The equa,:ﬁoﬁ . . .
N "\s.
'\\i”; 8N + 7 =2+ +7
.‘\
."%‘f"hold only if z, ¥, # are odd; but then
)" g tt=3 (mod 8).
cannat be Tepresented as

Hence numbers of the form SN ) +7 X
the sum of three squares. Again the equation

AN =2+ yt+ 7
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can hold only if ¢, ¥, z are even. It is clear then that s
equation has exactly the same number of solutions as the
equation

N = 22 + y? + 2% A
Consequently, all integers cxcept those of the form O ’
¢EN +T); k20 o

%

can be represented by the sum of threc squares. Tl;é&ﬁm GiLR

theorem was first proved by Gauss. The proof, \giﬁmn in this

chapter may be a little long but it is truly clementary. The

idea of this proof is due to Kronecker, who wasied to it by deep

investigations of elliptic functions with qgéi{}ex multiplication.
)

i" » v
'Y N/
N\l
www_dgz‘?}ln brary.org.in
N\

N

N\
)
¢ & /

O
A
o\
&
’\,j
O
A\
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